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a b s t r a c t

Adaptive beamformers will degrade in the presence of model mismatch. Because a wider
beamwidth has higher ability against steering vector errors, and lower sidelobe levels can
improve the robustness against fast moving interferences, in this work an iterative fast
Fourier transform (FFT) based adaptive beamformer is proposed with constraints on
beamwidth and peak sidelobe level. The adaptive beamforming is transformed to a
weighted pattern synthesis problem. This weighted pattern is a product of the array
pattern and a weighting function. Because the weighting function has shape peaks at the
direction of interferences, it will have nulls in the array pattern at the directions of
interferences by reducing the peak sidelobe level of this weighted pattern. A modified
iterative FFT algorithm is proposed to synthesize this weighted pattern. Thanks to the
efficiency of FFT, the nonconvex problem of power pattern synthesis can be solved
efficiently. This method is demonstrated through several simulation examples. The results
show the advantages of the proposed method in obtaining high output SINRs against
moving target signals and steering vector errors.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive beamforming has a wide range of applications
in radar, sonar, wireless communications, medical imaging
and other fields. The minimum variance distortionless
response (MVDR) beamformer has superior interference
rejection capability compared with the data-independent
beamformers as long as the array model is known accu-
rately [1]. In real world applications, model mismatch
which can be caused by steering direction errors, imperfect
array calibration, small sample size, the presence of desired
signal component in the training data etc., are usually
unavoidable. These imperfections will cause steering vector
errors and interference-plus-noise covariance matrix can-
not be estimated accurately. The performance of adaptive
beamformers degrades with these imperfections. Thus,
various robust adaptive beamforming techniques have been

proposed in the past decades ([2–21], and many references
therein). One popular and very effective approach to
process the steering vector error is based on the principle
of worst-case performance optimization [4]. This approach
requires the steering vector error upper bound which is not
known in many real world applications. Since the
interference-plus-noise covariance matrix is unavailable in
practice, it is usually replaced by the sample covariance
matrix derived from received samples of the array output.
However, the output signal-to-interference-plus-noise ratio
(SINR) of MVDR beamformers with sample covariance
matrix will be far from the optimal ones at the high SNRs
when there is mismatch between the actual and presumed
signal steering vectors or the number of snapshots is
relatively small. Aiming to solve this problem, [12] proposed
a robust adaptive beamforming method based on interfer-
ence covariance matrix reconstruction. The output SINRs of
the method in [12] are always close to optimal ones in a
very large range of SNR when the array model is exactly
known. However, this algorithm cannot control the beam-
width and the sidelobe levels.
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If there are desired sources moving so fast that the
array weights are unable to adapt fast enough, one may
prefer to design an array beampattern with constant
magnitude over a wide angle region. However, the beam-
forming with pattern magnitude constraints is a non-
convex problem which is very time consuming. For a
uniform linear array, this problem can be transformed into
a convex problem with the transformation from the array
output power and the magnitude response to linear
functions of the autocorrelation sequence of the array
weight [14,16]. Because the magnitude response is not
smaller than 0 at all angles in [0, 2π], enough inequality
constraints on the magnitude response of different angels
should be added in the optimization process (i.e. K in
equation (21) of [14] should be large). If the number of
sampling angles is small, the optimized autocorrelation
sequence may not be an autocorrelation sequence at all.
This makes this kind of technique have higher computa-
tional complexity compared with conventional robust
adaptive beamforming, especially when the array is large.
Most existing robust adaptive beamformers do not con-
sider the sidelobe of the beampattern. If the beampattern
has high sidelobes, it will degrade the performance greatly
during the time interval of updating the weights when
new interferences suddenly appear [18]. A second-order
cone programming approach in [18] was proposed to
control the sidelobe levels. However, this method did not
consider the steering vector error which can severely
degrade the performance.

An easy and promising iterative fast Fourier transform
(FFT) method [22,23] was presented to synthesize large
planar arrays, and it was later extended to synthesize
nonuniform arrays [24] and uniform planar arrays with
flat-top pattern [25]. This method is based on the Fourier
transform-pair relationship between the array excitations
and the array factor. Due to the efficiency of FFT, this
method can solve large array synthesis problems effi-
ciently. Here, we modify this iterative FFT method to
optimize the weights of uniform linear arrays for power
pattern synthesis.

In this paper, we will propose a robust adaptive beam-
former based on a modified iterative FFT method for
uniform linear arrays which can combine with constraints
on the mainlobe beamwidth and sidelobe levels. First, we
transfer the adaptive beamforming problem into a wei-
ghted array pattern synthesis problem, where the
weighted pattern is a product of the array pattern and a
weighting function. The value of the weighting function is
equal to the Capon spectrum in the sidelobe area and is
equal to a small constant in the mainlobe area. Therefore,
for the weighting function, there are peaks at the direc-
tions of interferences and no peak at the direction of the
target signal. Minimizing the output power of interfer-
ences and noise will be equal to minimizing the sidelobe
levels of this weighted pattern. When we decrease the
peak sidelobe level of the weighted pattern, the interfer-
ences are suppressed with high priority due to the great
values of the weighting function at their direction of
arrivals. Meanwhile we restrict the array has nearly con-
stant magnitude response in a range of directions, which
can improve the robustness of the beamformer against

array steering vector errors. We adjust the array pattern by
a modified iterative FFT method according to a weighted
array pattern. When the weighted pattern is arrived at the
desired one, the interferences have been suppressed and
the array pattern satisfies the given constraints. Finally, the
proposed method is validated by some simulation cases.

2. The proposed robust adaptive beamforming

Consider a uniform linear array with N isotropic sen-
sors equally spaced at distance d that receives signals from
multiple narrowband sources. The observation signal vec-
tor x(t) at the time instant t is an N�1 vector given as

xðtÞ ¼ sðtÞaðuoÞþvðtÞ ð1Þ

where s(t) is the waveform of the desired signal, a(u)¼
[1,ej2πdu/λ, …, ej2π(N-1)du/λ]T, u¼sin(θ), uo is associated with
the target signal impinging on the array from direction θo,
v(t) denotes the sum of the interferences and the noise.
The output of beamformer is given as y(t)¼wHx(t), where
w is the N�1 complex weight vector and (�)H stands for
the Hermitian transpose.

The goal of an adaptive beamformer is to receive the
desired signal and reject the interferences as well as noise.
With MVDR beamformer, the optimal weight vector w can
be obtained by solving the following problem

min
w

wHRvw subject tοwHaðuoÞ ¼ 1 ð2Þ

where Rv ¼ EfvðtÞvHðtÞg is the interference-plus-noise cov-
ariance matrix. The beamformer based on (2) is sensitive
to the steering vector error which can come from direction
of arrival mismatch, array calibration errors etc. To make
the beamformer more robust to steering vector error, we
constrain the array pattern gain over a wide direction
range to be greater than a given constant. Moreover, we
maintain low sidelobes against unexpected interferences.
The problem (2) can be rewritten as

min
w

wHRvw ð3aÞ

subject tο ηr jwHaðuÞjr1; uAUm ð3bÞ

jwHaðuÞjrε; uAUs ð3cÞ

where η and ε are given constants representing the ripple
level in the mainlobe and the peak sidelobe level in the
sidelobe region, Um and Us represent the set of u in the
mainlobe region and sidelobe region, respectively.

The constraint (3b) is non-convex which is time con-
suming to solve. In [14], by changing the variables w into
the variables r which is defined as the autocorrelation
sequence of complex weights, the non-convex constraints
are transformed to convex ones. However, as Section 3.4
will show, the number of angular samples should be large
enough to guarantee the variable r is an autocorrelation
sequence. This will increase the computational complexity
especially for the large arrays. In the following, we will
propose a modified iterative FFT based method to solve
(3a)–(3c) efficiently.
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