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a b s t r a c t

Adaptive beamformers are sensitive to model mismatch, especially when the desired signal
is present in the training data. In this paper, we reconstruct the interference-plus-noise
covariance matrix in a sparse way, instead of searching for an optimal diagonal loading
factor for the sample covariance matrix. Using sparsity, the interference covariance matrix
can be reconstructed as a weighted sum of the outer products of the interference steering
vectors, the coefficients of which can be estimated from a compressive sensing (CS)
problem. In contrast to previous works, the proposed CS problem can be effectively solved
by use of a priori information instead of using l1-norm relaxation or other approximation
algorithms. Simulation results demonstrate that the performance of the proposed adaptive
beamformer is almost always equal to the optimal value.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive beamforming is used to detect and estimate the
signal-of-interest at the output of a sensor array by means of
adaptive spatial filtering and interference suppression. It has
been widely used in radar, sonar, seismology, radio astron-
omy, wireless communications, acoustics, medical imaging,
and other areas [1,2]. When there is no required knowledge
of direction, blind source separation based beamforming
tries to recover the source signals relying on the properties
of the signals, such as the constant modulus especially in
wireless communication [3,4] (see also Chapter 6 of [2] and
the references therein). Instead, when the directions of the
source signals are available, the Capon adaptive beamformer
is an optimal spatial filter that maximizes the array output
signal-to-interference-plus-noise ratio (SINR) [1]. However, it
is also known to be sensitive to model mismatch, especially
when the desired signal is present in the training data. In

such a case, the Capon beamformer suffers severe perfor-
mance degradation. In addition, in practical applications the
required interference-plus-noise covariance matrix cannot
be perfectly estimated due to the limited training samples.
Therefore, adaptive beamforming approaches must be robust
against covariance matrix uncertainty.

Diagonal loading is a simple and well-known robust
adaptive beamforming technique [5]. However, there is no
clear guideline to choose an optimal loading factor in
different scenarios. Worst-case performance optimization
[6,7] can also be regarded as a diagonal loading technique;
however, the worst case does not always occur, and the
norm upper-bound of the mismatch vector is usually a
priori unknown. Hence, worst-case optimization is still
suboptimal. In the past years, some user parameter-free
adaptive beamforming algorithms were proposed (see, for
example, [8], and the references therein). Unfortunately,
these techniques obtain estimates of the theoretical covar-
iance matrix of the received signal, instead of the required
interference-plus-noise covariance matrix. More recently,
covariance matrix reconstruction methods were proposed
[9,10]. In [9], the covariance matrix was reconstructed
by locating the nulls of the beampattern of the Capon
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beamformer. However, all interference powers are set to
the largest eigenvalue of the sample covariance matrix,
which is not optimal. In addition, the number of sources is
also difficult to determine. In [10], the covariance matrix
was reconstructed based on the Capon spatial spectrum,
which usually underestimates the interference powers.
Furthermore, the computational complexity is compara-
tively large because of the integral operation.

Considering the fact that the number of sources is
typically less than the number of sensors in array signal
processing, in this paper we reconstruct the interference-
plus-noise covariance matrix in a sparse way. The recon-
structed interference covariance matrix is a linear combi-
nation of the outer products of the interference steering
vectors weighted by their individual powers, which can be
estimated from a compressive sensing (CS) problem. This
approach allows the desired signal to be removed out from
the covariance matrix reconstruction; hence, there will
be no signal component in the reconstructed covariance
matrix, which mitigates the signal self-nulling problem. In
the last decade, many signal recovery algorithms were
proposed in the field of CS, such as l1-norm convex
relaxation [11,12] and greedy iterative algorithm [13]
(see also [14] and the references therein). Unlike the
previous works which mainly exploited the sparsity or
compressibility, the proposed CS problem in this paper can
be effectively solved by use of a priori information of the
directions of the source signals, which can be estimated in
advance. And hence, a closed-form solution of the CS
problem can be derived. Numerical examples demonstrate
that the performance of the proposed adaptive beamform-
ing algorithm is nearly equal to the optimal value over a
wide range of signal-to-noise ratios (SNRs). Meanwhile,
the technique has low computational complexity.

2. The signal model

The output of a narrowband adaptive beamformer with
M omni-directional sensors at time k is given by

yðkÞ ¼wHxðkÞ; ð1Þ
where w¼ ½w1;…;wM�T ACM is the beamformer weight
vector, and ð�ÞT and ð�ÞH denote the transpose and Hermitian
transpose, respectively. The array received vector xðkÞ ¼
½x1ðkÞ;…; xMðkÞ�T ACM can be represented as

xðkÞ ¼ xsðkÞþxiðkÞþxnðkÞ; ð2Þ
where xsðkÞ ¼ asðkÞ, xiðkÞ, and xnðkÞ are statistically indepen-
dent components of the desired signal, interference, and
noise, respectively. In the desired signal term, aACM is the
spatial steering vector of the signal waveform s(k).

The optimal weight vector w can be obtained by max-
imizing the beamformer output SINR as

SINR9
EfjwHxsj2g

EfjwHðxiþxnÞj2g
¼ s2s jwHaj2

wHRiþnw
; ð3Þ

where s2s 9EfjsðkÞj2g is the signal power, Riþn9EfðxiðkÞþ
xnðkÞÞðxiðkÞþxnðkÞÞHgACM�M is the interference-plus-noise
covariance matrix, and Ef�g denotes statistical expectation.
The SINR maximization problem (3) is mathematically equiva-
lent to the minimum variance distortionless response (MVDR)

problem [15]:

min
w

wHRiþnw subject to wHa¼ 1; ð4Þ

which solution

wopt ¼
R�1
iþna

aHR�1
iþna

; ð5Þ

is sometimes referred to as the Capon beamformer. From this
principle of MVDR, several robust adaptive beamforming
algorithms have been developed and successfully applied in
a wide range of areas (see [16] and the references therein).

Since the exact interference-plus-noise covariance
matrix Riþn is not easy available even in signal-free
applications, it is usually substituted by the sample covar-
iance matrix R̂ ¼ 1=K∑K

k ¼ 1xðkÞxHðkÞ with K training snap-
shots, and the obtained adaptive beamformer wSMI ¼
R̂

�1
a=aHR̂

�1
a is called the sample matrix inversion

(SMI) adaptive beamformer [17]. Whenever there is a
desired signal, the SMI beamformer is in essence the
minimum power distortionless response (MPDR) beam-
former [1] instead of the MVDR beamformer (5). As K
increases, R̂ will converge to its theoretical version R¼
s2s aa

HþRiþn, and the corresponding SINR will approach
the optimal value as K-1 under stationary and ergodic
assumptions. However, when the number of snapshots K
is small, the large gap between R̂ and R is known to
dramatically affect the performance of the SMI beamfor-
mer, especially when there is a desired signal in the
training samples [5,18].

In previous works, researchers have focused on finding
the optimal loading factor for R̂ , which inevitably results
in performance degradation, especially at high SNRs (see
[8] and the references therein). The main reason is that
the signal is always active in any kind of diagonal loading
beamformers, and its effect becomes more and more
pronounced with the increase of SNR [10]. In order to
avoid the self-nulling phenomenon, in this paper, we will
reconstruct the desired interference-plus-noise covariance
matrix Riþn directly, rather than searching for the poten-
tial optimal diagonal loading factor.

3. The proposed algorithm

In order to reconstruct the interference-plus-noise
covariance matrix Riþn, we need to know the steering
vectors of all interferences and their powers, together with
the noise power. When the number of interferences, their
locations, and their powers are unknown, the covariance
matrix Riþn can be estimated as [10]

R̂ iþn ¼
Z
Θ
p̂CaponðθÞdðθÞdHðθÞ dθ ð6Þ

where dðθÞ is the steering vector associated with a
hypothetical direction θ based on the known array struc-
ture.

p̂Capon θð Þ ¼ 1

dHðθÞR̂ �1
dðθÞ

ð7Þ

is the Capon spatial power spectrum estimator [15], and Θ is
the complement sector of Θ. That is to say, Θ \ Θ¼ | and
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