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a b s t r a c t

In this paper, we address the problem of lower and upper automatic censoring of unwanted
samples from a rank ordered data of reference cells, i.e., dual automatic censoring,
and target detection with constant false censoring and alarm rates (CFCAR). Assuming a
non-stationary background with no prior knowledge about the presence or not of any
clutter edge and/or interfering targets, we propose and analyze the censoring and detection
performances of the dual automatic censoring best linear unbiased (DACBLU) CFCAR
detector in homogeneous and heterogeneous Weibull clutter. The cfcarness of both
censoring and detection algorithms are guaranteed by use of linear biparametric adaptive
thresholds. That is, we introduce a logarithmic amplifier, and determine the transformed
Gumbel distribution parameters through the Best Linear Unbiased Estimators (BLUEs). The
Censoring algorithm starts up by considering the two most left ranked cells and proceeds
forward. The selected homogeneous set is used to estimate the unknown background level.
Extensive Monte Carlo simulations show that the performances of the proposed automatic
censoring method used in conjunction with various CFAR detectors are similar to those
exhibited by their respective fixed-point(s) censoring detectors. Moreover, its performances
are even better than those related to automatic censoring methods based on the
assumption of initial homogeneous population.

& 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In signal detection, the basic goal is to derive the
optimum receiver structure based on some criterion that
is determined by the application. Such optimal detectors
require an essentially complete statistical description of the
input signals and clutter. In practice, this information may
not be available a priori, and the statistics of the input data
may also vary with time. These constraints lead to the
consideration of sub-optimal detectors. In practical radar
signal detection systems, the aim is to automatically detect
a target in clutter. Clutter is the term applied to any
unwanted radar signals from scatters that are not of interest
to the radar user. Since the environment in which the radar
operates depends on factors such as weather conditions
and physical location of operation, the returned signals are
statistically non-stationary, with un-known variance at the
receiver input. Target detection is commonly performed by
comparing the radar return to a threshold. Ideal detectors,
using a fixed threshold, are extremely sensitive to the
clutter variance. In fact, a small increase in the clutter
power results in a corresponding increase of several orders
of magnitude in the probability of false alarm ðPfaÞ, which is
intolerable. Thus, one of the main tasks of radar detection is
to maintain the constant false alarm rate (CFAR) constant.
This can be achieved by adaptive thresholdding techniques,
which are known to have the capacity to acquire immunity
against all kind of background heterogeneities caused by
the presence of precipitations and/or interferences and
reflections from other various undesirable objects. They
may appear as an extended clutter edge and/or as
unwanted interfering targets with unknown power levels
surrounding the cell being tested [1].

In order to guarantee CFAR detection, when the received
samples present in reference cells are neither independent
nor identically distributed, i.e., a heterogeneous environment,
a class of detectors based on order statistics has been
developed in the literature. In these detectors, the samples
are first ranked in an ascending order according to their
amplitude. Then, among the ordered reference cells, those
containing unwanted echoes are discarded. The remaining
homogeneous set of samples is used to estimate the unknown
background level [2–20].

Some well-known detectors based on rank order statis-
tics of sample data in a Gaussian background and censoring
of interfering targets are given in [2–5], and where the
number of interfering targets is assumed known a priori,
which may not be available in many applications. Conse-
quently, Barkat et al. [6] introduced the concept of automatic
censoring and proposed the generalized censored mean level
detector (GCMLD) CFAR, where the number of unknown
interfering targets is estimated and censored automatically.
The position of the clutter edge may not be available as well,
and thus the concept of automatic censoring was considered

further by Himonas and Barkat [7] and proposed the auto-
matic CMLD (ACMLD) and the generalized two-level CMLD
(GTL-CMLD) CFAR, which do not require any a priori infor-
mation about the environment. They considered and studied
cases where both a clutter edge and/or multiple target
situations is (are) present in the reference window. These
detectors estimate and censor automatically the highest
unwanted cells without any a priori information about the
presence or not of interfering targets, which is based on
forward iterative cell-by-cell censoring procedure for reject-
ing the unwanted cells.

In [8–12] some detectors based on rank order statistics for
non-Gaussian background were considered. In [8] Weber and
Haykin proposed the WH-CFAR detector whose adaptive
detection threshold does not rely on any distribution para-
meters' estimation. In [9] Levanon and Shor analyzed the
performance of the order statistics (OS-CFAR) detector pro-
posed in [4] for a Weibull clutter and for a known shape
parameter. They also considered theWH-CFAR detector for an
unknown shape parameter. For a homogeneous clutter, Ravid
and Levanon [10] introduced the maximum likelihood (ML)
CFAR detector based on the ML estimators of the Weibull
distribution parameters. In multiple target situations, they
also introduced the censored ML (CML) CFAR. Guida et al. [11]
considered the best linear unbiased (BLU) CFAR detector in
Weibull clutter; where a logarithmic amplifier is introduced to
transform theWeibull distribution into a Gumbel distribution.
That is, the location-scale (LS) type family allows the use of
BLU estimators of the Gumbel parameters to adjust the linear
biparametric detection threshold through a fixed number of
ranked cells taken from a reference windowwhose lower and
upper ends are trimmed. They also considered the BLU-CFAR
detector in [12] for a lognormal clutter distribution whose
transformation yielded the Gaussian distribution.

Automatic censoring for non-Gaussian clutter was
introduced in [13,14] by Almarshad et al. In [13] they
proposed the forward automatic censored cell averaging
detector (F-ACCAD) CFAR for the case of lognormal clutter
and multiple target situations. This detector uses ranked
transformed normal samples to censor automatically
the highest unwanted cells. It starts up the heterogeneity
tests from a set of ranked reference cells assumed to be
homogeneous and proceeds forward. Both censoring and
detection algorithms are based on a biparametric linear
thresholds for which the parameters of the normal dis-
tribution are estimated using a simple linear approach. In
[14], they considered the forward/backward automatic
censoring order statistics detectors (F/B-ACOSD) CFAR by
use of the Weber–Haykin adaptive threshold introduced
in [8]. Chabbi et al. [15,16] considered the forward/
backward order statistics automatic censoring and detec-
tion (F/B-OSACD) CFCAR in Weibull clutter and multiple
target situations. In [15], they considered a biparametric
linear threshold where the parameters of the transformed
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