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a b s t r a c t

This paper proposes a new approach to improve time series modeling by considering
stochastic and deterministic influences. Assuming such influences are present in observa-
tions, a first decomposition step is required to split them into two components: one
stochastic and another deterministic. As second step, models are adjusted on each
component and combined to form a hybrid model improving time series analysis. The
proposed approach considers the Empirical Mode Decomposition method and a Recur-
rence Plot-based measurement to decompose and assess stochastic and deterministic
influences. Experiments confirmed improvements in time series modeling.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Time series modeling permits understanding relations
among observations over time [1,2], what is useful in
several application domains such as: weather forecast,
decision making, drug interaction with organisms and
climate effects on agriculture [3]. There are two typical
approaches to model time series, in which the first
assumes deterministic and, the second, stochastic relations
among observations. Dynamical systems are considered in
the first approach [4] and statistical models were designed
to support the latter [5]. However, real-world systems
produce time series presenting a mixture of both types
of relations [6–10]. In such situation, the model accuracy
tends to be affected when one of the two approaches is
considered, i.e., dynamical system methods may produce
malformed attractors, whereas statistical models may
underestimate deterministic influences [11].

This drawback motivated us to adjust individual mod-
els on the stochastic and deterministic influences, also
referred to as components, and combine them to create a
hybrid model in attempt to represent time series at higher
accuracy. This requires a decomposition step, which is here
performed using the Empirical Mode Decomposition
(EMD) method [12].

EMD decomposes a time series into several compo-
nents under different influences. By adding the compo-
nents, the original time series is reconstructed. This
characteristic of the EMD method makes feasible to
analyze time series, whose observations are influenced
by additive noise, i.e., when observations are composed by
the sum of stochastic and deterministic influences. Aiming
at separating the stochastic and the deterministic compo-
nents, our approach uses Recurrence Quantification Ana-
lysis (RQA)1 [14,15] to assess every component extracted
by EMD. Then, dynamical system methods are used to
induce a model for the deterministic component, while
statistical models are adjusted on the stochastic. Both
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1 The Recurrence Quantification Analysis is a set of measurements
based upon the Recurrence Plot [13].
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models compose what is referred to as hybrid model,
which considers all influences present in time series.

The proposed approach was assessed using synthetic
scenarios, comparing two situations: (i) by applying either
dynamical system or statistical methods on the original
time series and (ii) by decomposing time series and
modeling their deterministic and stochastic components.
Experimental results confirmed the decomposition
improves time series modeling when there is a significant
mixture of both influences.

The remaining of this paper is organized as follows:
Section 2 presents a discussion on time series decomposi-
tion methods; Section 3 details our approach; the evalua-
tion strategy is presented in Section 4; in Sections 5 and 6,
we present experimental results and discussions, respec-
tively; finally, Section 7 presents concluding remarks.

2. Time series decomposition

At beginning of this study, we evaluated different
spectral-based decomposition methods, such as Fourier
(FT) [16,12] and Wavelet (WT) [17,12] transforms. FT and
WT are restricted to linear time series. In addition, FT
imposes an extra bias for stationary series [12].

FT and WT drawbacks motivated Huang et al. [12] to
propose the Empirical Mode Decomposition (EMD)
method, which supports the decomposition of time series
regardless their linearity, stationarity, and stochasticity.
EMD decomposes time series into a set of components,
also referred to as Intrinsic Mode Functions (IMFs), which
correspond to the most important series features (such as
Fourier coefficients, i.e., they have a dominant frequency
and amplitude) [12].

The key point to perform this decomposition is the
sifting process, which initially analyzes a time series x(t),
identifying local maxima and minima values. Afterwards,
the cubic spline method is applied on the maxima and
minima to compose the upper u(t) and lower l(t) envel-
opes, respectively [12]. Next, the approximation values
obtained using both cubic splines (upper and lower) are
used to compute the mean envelope m(t).

Later, m(t) is removed from the original time series x(t),
producing the first component candidate h1;1ðtÞ ¼ xðtÞ−
mðtÞ, in which the first index corresponds to the IMF
identifier (as this is the first IMF to be extracted, this
index is one) and the second refers to the candidate
identifier (as this is the first candidate, the index is also
one). This candidate is used in place of the original data
and all sifting process is repeated until the candidate
satisfies the IMF definition, which must agree with one
of the following requirements: (i) the number of extrema
and the number of zero-crossings must be either equal or
differ at most by one; or (ii) at every point, the mean m(t)
is zero.

After obtaining the candidate satisfying the IMF defini-
tion, the first IMF is defined according to h1ðtÞ ¼ h1;kðtÞ,
assuming k candidates were produced until reaching the
IMF definition. This first IMF is then removed from data, i.
e., xðtÞ−h1ðtÞ, and the resultant time series is again ana-
lyzed by the whole process, producing further IMFs until
reaching a stop criterion. This criterion usually occurs

when the last IMF becomes a monotonic function, avoiding
the extraction of further components. Hence, this last
component is called final residue, r(t) [12]. In summary,
according to EMD, a time series x(t) is composed of a set of
IMFs plus a residue as shown in Eq. (1).

xðtÞ ¼ ∑
j ¼ 1

hjðtÞ þ rðtÞ ð1Þ

After executing the EMD method on a time series, we
assess the determinism level of every resultant IMF,2 hj(t),
in order to separate the stochastic from the deterministic
influence present in every observation. Aiming at perform-
ing this task, we considered the Recurrence Quantification
Analysis (RQA), which is a set of measurements based on
the Recurrence Plot (RP) [18]. RP requires the reconstruc-
tion of the time series into a multidimensional space, also
referred to as phase space, which maps the relationships
among observations. After this reconstruction, relation-
ships are organized in a two-dimensional binary matrix,
called Recurrence Matrix,3 as defined in Eq. (2), in which ε
is a distance threshold, ∥ � ∥ is a norm used to calculate the
distance between observations, and Θð�Þ is a heaviside
function as defined in Eq. (3) [18].

Ri;j ¼Θðε−∥xi!−xj
!∥Þ ð2Þ

ΘðαÞ ¼
0; αo0
1; α≥0

(
ð3Þ

The structures generated by the Recurrence Matrix
provide information about the time series under study
[13,18] as, for instance: (i) isolated points mean system
states are rarely repeated, i.e., the time series is highly
stochastic; and (ii) diagonal lines occur when there is
persistent behavior, i.e., the determinism rate of a time
series is directly related to the number of diagonal lines.
However, such information relies on the visual inspection
of the Recurrence Plot, what is not a simple task even for
humans, adding subjectivity to the estimation of stochastic
and deterministic levels. In order to simplify this process
and automatize it, a set of measurements called Recur-
rence Quantification Analysis (RQA) was developed
[14,15]. Among all proposed measurements, we are parti-
cularly interested in one that quantifies the determinism
rate of time series as defined in Eq. (4), in which Pðε; lÞ
corresponds to the frequency of diagonal lines of length l
present in the RP structures. This frequency is calculated
using Eq. (5).

DET ¼
∑N

l ¼ lmin
lPðε; lÞ

∑N
i ¼ 1∑

N
j ¼ 1Ri;j; ∀i≠j

ð4Þ

Pðε; lÞ ¼ ∑
N

i;j ¼ 1
ð1−Ri−1;j−1ðεÞÞð1−Riþl;jþlðεÞÞ ∏

l−1

k ¼ 0
Riþk;jþkðεÞ ð5Þ

Then, we considered the EMD method to extract
components from time series and the determinism rate
measurement, provided by RQA, to design a new approach

2 IMF is also referred to as component in this paper.
3 The Recurrence Plot corresponds to the Recurrence Matrix plotted.
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