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a b s t r a c t

This paper proposes nonlinear autoregressive (AR) models for time series, within the
framework of kernel machines. Two models are investigated. In the first proposed model,
the AR model is defined on the mapped samples in the feature space. In order to predict a
future sample, this formulation requires to solve a pre-image problem to get back to the
input space. We derive an iterative technique to provide a fine-tuned solution to this
problem. The second model bypasses the pre-image problem, by defining the AR model
with an hybrid model, as a tradeoff considering the computational time and the precision,
by comparing it to the iterative, fine-tuned, model. By considering the stationarity
assumption, we derive the corresponding Yule–Walker equations for each model, and
show the ease of solving these problems. The relevance of the proposed models is studied
on several time series, and compared with other well-known models in terms of accuracy
and computational complexity.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The autoregressive (AR), or linear predictive, model is
pervasive in science and technology, with an essential role
in the analysis of time series in applications ranging from
financial forecasting, to meteorological analysis, to speech
processing. For instance to maintain a phone conversation,
every cell phone estimates a linear model every 20
milliseconds [1]. The AR model defines each sample as a
linear combination of previous samples. The problem
consists of estimating the coefficients in the linear combi-
nation. Essentially, two strategies have been investigated.
The model parameters are estimated either by minimizing
the mean square error, or by considering the correlation
between the samples. The underlying mathematics
that govern the AR model are the Yule–Walker equations.
The scientific community has made an ever-growing

investment to master these equations for the linear predic-
tion [2]. The Yule–Walker equations are the building block
of the linear AR model, connecting its parameters to the
covariance function of the process. The model parameters
are therefore estimated from the covariances of the time
series. Forecasting can be considered by applying the
resulting predictive model. However, the linearity assump-
tion is often insufficient to explain nonlinear phenomena.
A first attempt to derive a nonlinear Yule–Walker like
procedure for a specific nonlinear, high-order, model is
given in [3]. Nevertheless, up to our knowledge, there is no
work that combine the power of the Yule–Walker equa-
tions with the proliferating kernel-based methods.

Kernel machines are essentially based on a nonlinear
transformation of the data, by using a mapping function
from the input space to some feature space, prior to
applying a linear procedure in the latter space [4]. Never-
theless, it is not necessary to explicitly define the non-
linear transformation, but implicitly by considering a
(positive semi-definite) kernel function. The use of kernel
machines has received considerable attention since Vapnik's
Support Vector Machines (SVMs) [5]. Many nonlinear
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techniques have been derived, such as the kernel principal
component analysis, kernel Fisher discriminant analysis,
and SVM novelty detection, only to name a few. In the
same spirit, some kernel-based methods were considered
for the analysis and prediction of time series data [6],
including the SVM regression and kernel Kalman filter [7].
A first attempt to use the AR model with the kernel-based
machines was introduced in [8], with parameters esti-
mated by minimizing the mean square error. However, the
proposed model fails to perform a prediction scheme.
While the model parameters are determined in the feature
space, the predicted samples need to be evaluated back in
the input space, i.e. the space of samples. Therefore, a pre-
image technique must be used in order to predict future
samples, as we have proposed in [9].

In this paper, we derive nonlinear prediction models by
taking full advantage of the Yule–Walker equations. This
leads to the estimation of the model parameters by using
lagged expected kernels. It is worth noting that the
concept of expected kernels has shown its efficiency in
recent research [10,11]. Two models are under investiga-
tion in this paper.

The first model is based on the underlying concept
behind kernel machines, namely mapping data from an
input space to a feature space. By operating an AR model
on the images of the samples, prediction is defined in the
feature space. To provide the predicted sample, one needs
to get back to the input space, namely to the space of
samples. This is the pre-image problem, with a solution
(sample in the input space) that has an image as close as
possible to the predicted feature (in the feature space).
By following recent developments in the resolution of this
ill-posed problem [12], we derive an iterative technique to
provide a fine-tuned solution to this problem. We propose
to bypass the pre-image problem, by deriving another
model. In the second model, we propose an hybrid
formulation, as a tradeoff considering the computational
time and the precision, compared to the iterative, fine-
tuned, model.

The rest of the paper is organized as follows: In the
next section, we introduce the linear AR model and
present the Yule–Walker equations for estimating the
model parameters, and give the main idea behind kernel
machines in Section 3. The first model is derived in Section 4,
by applying the AR model on the images of the samples, and
solving the pre-image problem to interpret the prediction in
the input space. Section 5 provides pre-image-free techni-
ques, by deriving an AR model on the kernel values. Finally,
Section 7 illustrates the efficiency of the proposed models on
several time series data, and provides a comparative study
with well-known prediction methods.

2. The Yule–Walker equations of the linear
autoregressive model

The linear AR model defines each sample as a linear
combination of previous samples. Let x1, x2, …, xn be a
time series, the p-order AR model is described by

xi ¼ ∑
p

j ¼ 1
αjxi−j þ εi; ð1Þ

for i¼ pþ 1; :::;n, and where εi is the unfitness error, often
assumed white Gaussian with zero mean. Fig. 1 illustrates
the concept of the AR model. The parameters α1, α2, …, αp
are directly connected with the covariance function of the
process. One can therefore determine these parameters
from the autocorrelation function. This is the essence of
the Yule–Walker equations, as illustrated here.

Let the data be centered, thus let μ be the expectation
of xi, namely,

μ¼ E½xi�;
where E½�� is the expectation.1 If we apply the expectation
on each side of (1), we get that ð1−∑p

j ¼ 1αjÞμ¼ E½εi�. For any
positive lag τ, we can evaluate the autocorrelation function
of each time series. Let r be the empirical counterpart of
the autocorrelation function of the time series, then
rðτÞ ¼∑p

j ¼ 1αj rðτ−jÞ, for any lag τ≥1. Since the autocorrela-
tion function is even, i.e., rð−τÞ ¼ rðτÞ, we obtain the matrix
form of the Yule–Walker equations

r¼ Rα;

where r¼ ½rð1Þ rð2Þ:::rðpÞ�⊤, α¼ ½α1 α2:::αp�⊤, and

R¼

rð0Þ rð1Þ ::: rðp−1Þ
rð1Þ rð0Þ ::: rðp−2Þ
⋮ ⋮ ⋱ ⋮

rðp−1Þ rðp−2Þ ::: rð0Þ

2
66664

3
77775:

Assuming that the p� p symmetric matrix R is invertible,
the coefficients α are estimated by α¼ R−1r. Once the
coefficients are estimated, the AR model can be applied to
predict future samples, with xk ¼∑p

j ¼ 1αjxk−j.
While this technique is easy to implement, it is not

adapted for nonlinear systems. Next, we derive Yule–
Walker-like equations for nonlinear models, within the
framework of kernel machines. But before, we prepare the
ground by briefly describing the main idea behind the
kernel machines.

3. Kernel machines

A kernel is a symmetric and continuous function
defined by κ : X �X↦R, where X is an input space.
If the kernel verifies ∑i;jαi αj κðxi; xjÞ≥0 for all αi, αj∈R and
all xi, xj∈X , then the kernel is positive semi-definite. The
Moore–Aronszajn theorem [13] states that each positive
semi-definite kernel defines a unique (up to an isometry)

Fig. 1. Illustration of the AR model, where the xi is defined by a linear
combination of the p previous samples xi−k ’s, with weight parameters α1,
α2, …, αp .

1 In this paper, all expectations are taken on the index i.
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