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a b s t r a c t

We present a greedy recursive algorithm for computing sparse solutions to systems of
linear equations. Derived from adaptive matching pursuit, the algorithm employs a greedy
column selection strategy which, combined with coefficient update via coordinate
descent, ensures a low complexity. The sparsity level is estimated online using the
predictive least squares (PLS) criterion. The key to performance is the minimization of two
residuals, corresponding to two solutions with different sparsity levels, one for finding the
values of the nonzero coefficients, the other for maintaining a large enough pool of
candidates for the PLS criterion. We test the algorithm for a sparse time-varying finite
impulse response channel; the performance is comparable with or better than that of the
competing methods, while the complexity is lower.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years numerous problems like compression,
prediction, array processing, channel identification or echo
cancellation have generated much interest in the develop-
ment of algorithms for recursively finding sparse solutions
to systems of linear [1,2]. The search for methods that
produce sparse solutions began with the development of
batch algorithms like the basis pursuit [3], the least
absolute shrinkage and selection operator [4] or the ortho-
gonal least squares [5]. In practice, however, the data are
often available sequentially and thus adaptive algorithms
that compute the solution recursively are much more
efficient. The different adaptive methods proposed range
from convex relaxation techniques [6–8] to algorithms

based on projections onto convex sets [9] or greedy methods
[10,11]. With roots in the traditional adaptive filtering, sparsity
aware LMS algorithms have also been developed [12,13].

The aim of this paper is to present a new adaptive
greedy algorithm that uses a selection strategy inspired
from [11], but now coupled with coefficient update based
on coordinate descent, thus having low complexity with-
out negatively affecting the performance.

Let us consider a typical finite impulse response (FIR)
channel identification problem where the input u(t) and
the output d(t) are known at each time instance t. We
desire to estimate the true coefficients hj that result from
the minimization of the estimation error

eðtÞ ¼ dðtÞ− ∑
N−1

j ¼ 0
hjuðt−jÞ: ð1Þ

Using an exponential window with forgetting factor
0oλ≤1, the least-squares criterion to be minimized is

JðtÞ ¼ ∥bðtÞ−AðtÞxðtÞ∥2: ð2Þ
The solution xðtÞ resulting from the minimization of J(t) is
the estimate of the vector h of true coefficients, which is
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assumed to be sparse, with Lt⪡N nonzero elements. The
matrix AðtÞ∈Rt�N , constructed using the input data, has the
i-th row equal to λðt−iÞ=2αðiÞT with

αðiÞ ¼ ½uðiÞ uði−1Þ…uði−N þ 1Þ�T : ð3Þ
The vector bðtÞ∈Rt is composed of the exponentially
weighted output data bi ¼ λðt−iÞ=2dðiÞ. The index (i) is used
to indicate the data from time i; we define βðiÞ ¼ dðiÞ for
later use. We presume the environment to be slowly
varying such that the solution does not change greatly
between two consecutive time instances.

We develop an adaptive algorithm for finding a sparse
minimizer of the criterion (2). The most remote ancestors of
our algorithm are the matching pursuit (MP) algorithm [14]
and its adaptive counterpart, the adaptive matching pursuit
(AMP) [10]. The solution is updated at each time t via
coordinate descent. This technique is used in other adaptive
algorithms; it can be tailored for finding either full solutions
like in [15] or sparse solutions, for example in [8]. A related
algorithm is the (batch) cyclic MP [16,17], which uses several
rounds of coordinate descent at each step of the greedy
search. We have presented an adaptive version of cyclic MP
[18]; however, the current algorithm is quite different in the
organization of the computation and does not repeat the
optimization of a coefficient at the same time instance, but
spreads it over time; hence, its complexity is lower.

Since we use some techniques from the GRLS algorithm
[11], we discuss here the differences and similarities between
this work and [11]. Our new algorithm requires a pseudo
ordering of the columns from A that contribute to the
solution; any method providing such an order may be used
but we only present two approaches. The first is inspired from
[11] and uses neighbor permutations, while the second,
simpler, only tries to find the worst column. The neighbor
selection strategy is used in [11] for a completely different
underlying algorithm and it is one of the few viable methods
that allow low complexity, while for the algorithm herein
such restrictions do not apply.

We estimate online the sparsity level Lt using the pre-
dictive least squares criterion (PLS) [19], like in [11], although
other model selection criteria exist [20,21] and the Bayesian
information criterion [20] is also used in [11]. However, the
mechanism that is created to allow the use of PLS is new and
is specifically tailored for the algorithm presented here. A
distinctive feature is the minimization of two residuals related
to criterion (2), corresponding to solutions with different
sparsity levels; this also implies some modifications in the
column selection strategy, compared to [11]. Finally, the
coefficient estimation strategy is completely different from
the orthogonalization from [11]; here, the coordinate descent
ensures a good approximation of the least-squares solution,
with significantly lower complexity than in [11]; the only
similarity is that we use a fixed number of scalar products
instead of the indefinitely long matrix A and vector b, but this
is a standard storage technique.

The contents of this paper is as follows. In Section 2 we
present our proposed algorithm for computing a sparse
solution with fixed sparsity level. In Section 3 we describe
our procedure based on the minimization of two residuals
for the online estimation of the sparsity level Lt and the
computation of the solution. In Section 4 we discuss the

complexity of our algorithm, compared to that of other
algorithms. Section 5 contains the simulation results used
to validate the performance.

2. Fixed-sparsity level adaptive matching pursuit with
coordinate descent

We describe the basic operation of our algorithm
assuming that, at time t, we have computed an m-sparse
solution xðtÞ, permuted such that its nonzero elements
are in the first m positions, which are named active. The
columns of the matrix AðtÞ are permuted accordingly;
we will not show the permutation explicitly, but only
explain how it changes. The value m≥Lt is assumed to be
fixed in this section. The residual corresponding to the
solution xðtÞ is

rðtÞm ¼ bðtÞ− ∑
m

i ¼ 1
xðtÞi aðtÞ

i ; ð4Þ

where aðtÞ
i is the i-th column of (the permuted) AðtÞ.

At time t+1, the new (permuted) data are appended

bðtþ1Þ ¼
ffiffiffi
λ

p
bðtÞ

βðtþ1Þ

" #
; Aðtþ1Þ ¼

ffiffiffi
λ

p
AðtÞ

αðtþ1ÞT

" #
: ð5Þ

To ease the notation, from now on we remove the upper
index t+1 that marks the variables affected by current
computations. Using the solution from time t, the new
residual is

rm;0 ¼ b− ∑
m

i ¼ 1
xðtÞi ai ¼

rðtÞm

β− ∑
m

i ¼ 1
xðtÞi αi

2
64

3
75: ð6Þ

At time t+1 we perform two tasks: (i) we manage the
order of the active positions and (ii) we update the values
of the solution x. Task (i) is typical to greedy algorithms
and MP in particular; it aims to identify the nonzero
coefficients and order them based on their importance.
To reduce complexity and relying on the slow variability of
the channel, we use for now the search scheme from [11]
that allows order changes almost only between neighbors;
the only exception is the last position in the active set, for
which we permit all the inactive columns to compete with
the current active column occupying that position. Task (ii)
is performed by a simple coordinate descent on each of the
active positions, optimizing the residual corresponding to
the m-sparse solution. The two tasks are intertwined and
act successively on each active coefficient.

To update the coefficient i, with iom, we compute a
partial residual with the two neighbor positions i and i+1
temporarily removed from the active set

~rm;i ¼ rm;i−1 þ xðtÞi ai þ xðtÞiþ1aiþ1: ð7Þ

The column that takes position i is decided by looking at
the best alignment with this residual, i.e. with the standard
MP criterion

k¼ arg max
l∈S

jaT
l
~rm;ij2

∥al∥2
; ð8Þ

with S ¼ fi; iþ 1g. If position i+1 is better, then positions i
and i+1 are permuted. The optimization of coefficient xi is a
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