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A B S T R A C T

Advances in neuroimaging have provided a tremendous amount of in-vivo information on the brain's organisa-
tion. Its anatomy and cortical organisation can be investigated from the point of view of several imaging mo-
dalities, many of which have been studied for mapping functionally specialised cortical areas. There is strong
evidence that a single modality is not sufficient to fully identify the brain's cortical organisation. Combining
multiple modalities in the same parcellation task has the potential to provide more accurate and robust sub-
divisions of the cortex. Nonetheless, existing brain parcellation methods are typically developed and tested on
single modalities using a specific type of information. In this paper, we propose Graph-based Multi-modal Par-
cellation (GraMPa), an iterative framework designed to handle the large variety of available input modalities to
tackle the multi-modal parcellation task. At each iteration, we compute a set of parcellations from different
modalities and fuse them based on their local reliabilities. The fused parcellation is used to initialise the next
iteration, forcing the parcellations to converge towards a set of mutually informed modality specific parcellations,
where correspondences are established. We explore two different multi-modal configurations for group-wise
parcellation using resting-state fMRI, diffusion MRI tractography, myelin maps and task fMRI. Quantitative and
qualitative results on the Human Connectome Project database show that integrating multi-modal information
yields a stronger agreement with well established atlases and more robust connectivity networks that provide a
better representation of the population.

1. Introduction

In-vivo neuroimaging and its recent advances have significantly
contributed towards a thorough understanding of the brain's organisa-
tion. The brain's anatomy and cortical organisation can be investigated
from the point of view of several sources of information: functional and
diffusion Magnetic Resonance Imaging (fMRI and dMRI respectively)
have allowed to infer the brain's structural and functional connectivity,
while cortical folding or myelination patterns can be extracted from
structural MRI. In particular, dMRI, fMRI and myelin maps have been
largely studied for mapping functionally specialised cortical areas
(Glasser et al., 2013; Craddock et al., 2012; Moreno-Dominguez et al.,
2014), an objective which has been prominent for over a century (Zilles
and Amunts, 2010).

There is strong evidence that a single modality is not sufficient to fully
identify the brain's cortical mapping (Eickhoff et al., 2015). Indeed,
cortical areas are believed to be defined by their microstructure, their

connectivity and their function (Passingham et al., 2002). Because of this,
a specific modality might not allow identification of the boundaries of all
cortical areas. An accurate delineation of all cortical areas requires
multiple modalities to exploit their complementarity and confirm the
existence of certain boundaries. Yet, most existing brain parcellation
methods are typically developed and tested on a specific type of infor-
mation. Several popular parcellations have been derived from cortical
folding (Tzourio-Mazoyer et al., 2002; Destrieux et al., 2010) or
cytoarchitecture (Brodmann and Garey, 2005). More recently,
connectivity-driven parcellations, in particular from resting state fMRI
(rs-fMRI), have attracted a growing interest (Baldassano et al., 2015;
Arslan et al., 2015; Blumensath et al., 2013; Cohen et al., 2008; Shen
et al., 2013; Gordon et al., 2016; Thomas Yeo et al., 2011). The idea is to
regroup vertices on the cortical surface based on how similar their con-
nectivity profiles are. This is linked to the fact that parcellation can also
be approached from a dimensionality reduction point of view for the
study of brain connectivity networks. An essential step for the
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construction of these networks is the definition of the network nodes,
which is typically done using parcellation techniques, where each parcel
corresponds to a node. Connectivity-driven parcellations are expected to
provide more accurate nodes than anatomical or random parcellations as
they are derived directly from the connectivity data (Sporns, 2011).

In addition to the fact that a single modality cannot provide accurate
cortical areas, mono-modal approaches are plagued by modality specific
noise and biases which can significantly decrease the performance of
parcellation algorithms. For instance, myelin maps only provide infor-
mation on a subset of the cortex (highly myelinated regions), while
diffusion MRI is a very indirect measurement of structural connectivity
which is sensitive to the tractography algorithm used to recover the white
matter fibres (Maier-Hein et al., 2016). dMRI is also subject to a gyral bias
and geometrical issues associated with tractography algorithms. For
these reasons, such algorithms tend to terminate fibres in gyri over sulci
and align parcel boundaries with cortical folding (Van Essen et al., 2014).
In contrast to this, rs-fMRI has the potential to provide reliable infor-
mation across the cortex, but the modality has a poor signal to noise ratio
(SNR) which can affect the accuracy and reproducibility of parcel
boundaries. While the influence of noise can be strongly reduced when
doing analysis on large groups, biases in the data (e.g. dropout in fMRI
susceptibility regions) will constitute another important issue.
Combining multiple modalities in the same parcellation task has the
potential to provide more accurate and robust parcellations, since the
different modalities are intrinsically related.

Nonetheless, only a few methods have tackled the problem of
combining multiple modalities in the parcellation task. A popular
approach aims to combine structural and functional connectivity so as to
construct a multi-modal connectivity matrix, typically with the aim of
constructing less noisy fMRI connectivity matrices using dMRI informa-
tion (Ng et al., 2012; Venkataraman et al., 2012). Assuming fMRI is
directly dependent on structural connectivity, fMRI connections are only
considered valid if they are supported by a physical connection measured
by tractography. One of the main flaws of this approach is the fact that
tractography itself can be unreliable and particularly prone to false
positives (Maier-Hein et al., 2016), but also to false negatives. As a result,
the functional connections estimated from structural support could be
biased and inaccurate due to tractography errors. Furthermore, working
directly on creating multi-modal connectivity matrices does not allow
considering other types of information (e.g. myelin maps) for the con-
struction of a multi-modal parcellation. Glasser et al. (2016) approached
the problem differently and generated a group-wise parcellation using a
semi-automated approach where an algorithm placed parcel boundaries
based on expert decisions using aligned rs-fMRI, task fMRI, myelin maps,
cortical thickness and topographically organised functional connectivity.
Parcel boundaries were delineated if they were consistent across at least
two modalities. This group level segmentation was then transferred to
the single subject level using a classifier.

Markov/Conditional Random Fields (M/CRFs) offer a way of con-
structing very tunable models which is beneficial for the problem of
parcellation in several aspects: control over the level of parcel smooth-
ness, flexible model design, easy incorporation of prior knowledge and
natural extension to multi-modal or group-wise analysis. MRFs have been
used for a plethora of image processing applications, including image
segmentation (Boykov and Funka-Lea, 2006), registration (Glocker et al.,
2008) or image denoising (Geman and Geman, 1984). Through the MRF
formulation, parcellation is cast as a labelling problem, where each label
corresponds to a specific parcel and is to be assigned to a set of nodes in a
graph representing brain geometry. In our setting, the vertices of the
cortical surface mesh correspond to the nodes of the MRF model. This
labelling problem is solved by minimising the MRF energy which com-
prises unary and pairwise terms. The unary terms describe the likelihood
of assigning a node to a specific parcel (i.e. label) while pairwise terms
model the interactions between neighbouring nodes and typically act as
smoothing priors. A significant advantage of MRF models is that they do
not make any assumption on the input data. In other words, several

modalities can be considered and processed within the same framework.
The use of MRFs for rs-fMRI driven parcellation has recently been the
subject of several publications (Lashkari et al., 2010; Ryali et al., 2013;
Honnorat et al., 2015; Parisot et al., 2015, 2016b). The proposed
methods describe the likelihood of assigning a node to a specific parcel as
the correlation to the parcel's average connectivity profile. Ryali et al.
(2013) proposed an EM-like approach tailored for fMRI data that itera-
tively estimated the parcellation using graph cuts (Boykov and
Funka-Lea, 2006) and estimated the unary cost's parameters based on the
current parcellation status. Honnorat et al. (2015) introduced the notion
of parcel centres which are associated with a representative connectivity
profile of the parcel. The MRF unary cost describes the correlation of a
node's profile with the parcel centre's profile. This approach considers all
nodes as potential parcel centres, which can be computationally expen-
sive and subject to noise. A connectedness prior is introduced in the form
of a star shape prior. Both approaches determine the number of parcels
using label costs that estimate the number of necessary labels given a
penalty. Despite the appeal of inferring the number of parcels from the
data, this setting boils down to replacing the intuitive choice of the
number of parcels with a different parameter of unknown impact.

In Parisot et al. (2015, 2016b), we introduced Graph-based Multi-
modal Parcellation (GraMPa), an iterative MRF framework designed to
handle the large variety of available multi-modal data: (1) We propose a
set of modality specific unary cost functions that allow parcellating the
brain according to different modalities and their properties. This allows
to construct modality specific parcellations that can be comparedwithout
biases introduced by the use of different parcellation methods. (2) We
extend the proposed framework to the context of multi-modal parcella-
tion through the introduction of a multi-modal merging step. At each
iteration, we obtain a set of parcellations from different modalities and
fuse them based on prior knowledge of the modalities’ reliabilities and
their interactions. The fused parcellation is used to initialise the next
iteration, forcing the parcellations to converge towards a set of coherent
yet modality specific parcellations. This provides a framework that al-
lows 1) to directly compare different modalities, 2) to construct a multi-
modal parcellation and 3) to increase the robustness of mono-modal
parcellations through the introduction of additional and complemen-
tary information.

In Parisot et al. (2015, 2016b), we focused on parcellation at the
single subject level. In this paper, we provide a more general and detailed
formulation of the model and investigate the impact of the proposed
method on group-level analysis. This allows to explore multiple multi-
modal associations and to compare obtained parcellations to well
established atlases. In particular, we investigate the use of task activation
maps as an additional source of information, which are too noisy to be
used at the single subject level. We evaluate the ability of our framework
to parcellate based on different types of inputs and exploit this property
to provide an experimental set-up that quantitatively evaluates multi-
modal agreements. Additionally, we evaluate the impact of integrating
multiple modalities on the delineation of cortical areas, as well as from
the point of view of network analysis. Our experiments on data from the
Human Connectome Project (HCP) database using rs-fMRI, dMRI, myelin
maps and task activation maps show that GraMPa yields a stronger
agreement between modalities and more robust connectivity networks
that provide a better representation of the population.

2. Material and methods

The proposed iterative multi-modal model is illustrated in Fig. 1. In
this section, we first introduce the mono-modal setting where one mo-
dality is parcellated using an MRF unary cost tailored for this specific
input data. We then introduce the multi-modal extension, which is
designed as a step that fuses information from multiple modalities.
Finally, we describe the methodological details for our evaluation set-up.

We introduce below a set of notations that will be used throughout
this paper. We aim to parcellate the brain's cortical surface into a set of K
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