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A B S T R A C T

Major methodological advancements have been recently made in the field of neural decoding, which is concerned
with the reconstruction of mental content from neuroimaging measures. However, in the absence of a large-scale
examination of the validity of the decoding models across subjects and content, the extent to which these models
can be generalized is not clear. This study addresses the challenge of producing generalizable decoding models,
which allow the reconstruction of perceived audiovisual features from human magnetic resonance imaging (fMRI)
data without prior training of the algorithm on the decoded content. We applied an adapted version of kernel
ridge regression combined with temporal optimization on data acquired during film viewing (234 runs) to
generate standardized brain models for sound loudness, speech presence, perceived motion, face-to-frame ratio,
lightness, and color brightness. The prediction accuracies were tested on data collected from different subjects
watching other movies mainly in another scanner.

Substantial and significant (QFDR<0.05) correlations between the reconstructed and the original descriptors
were found for the first three features (loudness, speech, and motion) in all of the 9 test movies (R¼0.62,
R ¼ 0.60, R ¼ 0.60, respectively) with high reproducibility of the predictors across subjects. The face ratio model
produced significant correlations in 7 out of 8 movies (R¼0.56). The lightness and brightness models did not show
robustness (R¼0.23, R ¼ 0). Further analysis of additional data (95 runs) indicated that loudness reconstruction
veridicality can consistently reveal relevant group differences in musical experience.

The findings point to the validity and generalizability of our loudness, speech, motion, and face ratio models for
complex cinematic stimuli (as well as for music in the case of loudness). While future research should further
validate these models using controlled stimuli and explore the feasibility of extracting more complex models via
this method, the reliability of our results indicates the potential usefulness of the approach and the resulting
models in basic scientific and diagnostic contexts.
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1. Introduction

“Mind reading” based on neural decoding is an ambitious line of
research within contemporary neuroscience. Assuming that certain psy-
chological processes and mental contents may be encoded in the brain as
specific and consistent patterns of neural activity, researchers in this field
aim to decode and reconstruct them given only the neuroimaging data. In
order to “read” stimuli out of one's brain, researchers adopt different
machine learning approaches and apply various pattern analysis methods
that link local or distributed neural activity patterns with specific au-
diovisual features.

Neural decoding refers to the prediction of a stimulus features from
measured brain activity (Schoenmakers et al., 2013) (fMRI data in our
case). Several notable neural decoding achievements have been reported
so far, mainly in studies employing functional magnetic resonance im-
aging (fMRI), but also in intracranial recording and electro- and
magneto-encephalography experiments (for review, see Chen et al.,
2013; Haxby, 2012). Reported decoding classification accuracies for
out-of sample data commonly range between 70 and 90% (see Poldrack
et al., 2009), and correlation as high as 0.99 between predicted and
observed continuous descriptors was demonstrated (Valente et al.,
2011). Decoding targets vary and include mental states such as action
intentions (Haynes et al., 2007), reward assessment (Kahnt et al., 2011)
and response inhibition (Cohen et al., 2010; Poldrack et al., 2009);
low-level features such as visual patterns in dynamic video (Nishimoto
et al., 2011), geometrical patterns, text (Fujiwara et al., 2009; Miyawaki
et al., 2008; van Gerven et al., 2010), and optical flow acceleration in a
video game (Chu et al., 2011; Valente et al., 2011); and semantic ele-
ments such as animal and objects categories (Connolly et al., 2012;
Haxby et al., 2001, 2011), objects and actions in a hierarchical semantic
space (Huth et al., 2012), visual imagery content during sleep (van
Gerven et al., 2010), and actions and events in a video game (Chu et al.,
2011; Valente et al., 2011).

This productive stream of research supports the appealing vision of
generating a repertoire of “fMRI fingerprints” for a wide range of mental
states and perceptual processes (or “cognitive ontology”, see Poldrack
et al., 2009). Ideally, such repertoire will facilitate robust and rich neural
decoding for any subject independently of prior training and using any
standard MRI scanner. The generation of a reliable repertoire of this kind
is valuable both in terms of basic science (providing a reproducible and
comprehensive ground truth for brain-function mapping) and applicable
technology (in diagnosis, for instance; see Cohen et al., 2011).

Strong evidence for the generalizability of such repertoire of func-
tional models of the brain can be gained by demonstrating their perfor-
mance under conditions of high heterogeneity across the training and the
test data. For this end, it is necessary to show that these models facilitate
successful decoding also when analyzing stimuli that are different from
those on which the algorithm was trained. However, eminent neural
decoding achievements were gained using a within-subject design
including only five subjects or less (e.g., Horikawa et al., 2013; Huth
et al., 2012; Miyawaki et al., 2008; Nishimoto et al., 2011), which limits
the examination of the reproducibility of the results. Thus, the key aspect
of inter-subject generalizability of neural decoding has yet to be sys-
tematically investigated (Chen et al., 2013).

Confronting the limitations of the within-subject design in neural
decoding, Haxby and colleagues have recently demonstrated the feasi-
bility of between-subject classification. This group developed methods
for cortical anatomy alignment for different subjects based on the
maximization of the inter-subject similarity of blood oxygen level
dependent (BOLD) reaction patterns (Haxby et al., 2011; Sabuncu et al.,
2010) and functional connectivity structures (Conroy et al., 2013). These
studies have demonstrated that between-subjects classification may yield
success rates equivalent to those of within-subject classification. Suc-
cessful decoding of data of out-of-sample individual was also reported in
few other studies that did not implement inter-subject alignment
methods that rely on functional data. Shinkareva et al. (2008) and

Poldrack et al. (2009), reached average accuracy rates of ~80% in
classifying visual input and task type, respectively. Cohen and colleagues
(Cohen et al., 2011) decoded response inhibition related variables with
above-chance correlation values of 0.4–0.5 between the predicted and
real parametric values.

In keeping with the notion that a compelling validation of neural
decoding method relies on its success under highly heterogeneous con-
ditions, the current work introduces a markedly increased variability
across several experimental dimensions. First, we aimed to decode
continuous time-varying features, which change on a moment-to-
moment basis. Second, we tested the decoding reliability on a set of
different movies, comprising highly heterogeneous, complex, and natu-
ralistic stimuli. Lastly, the validation of the function-brain models was
performed using movies that were not employed in the training pro-
cedure with data collected in a different MRI scanner from un-tested
individuals. An overview of the study is given in Fig. 1.

We combined data from 234 movie-viewing sessions (with 5 different
clips) for the training of our algorithm and the cross-validation of the
resulting model (Table 1). The validity of the models was tested using an
independent sample of 63 sessions (with 9 other clips). We selected
relatively coarse features across three elementary perceptual domains:
audio, vision and motion. The selected features were sound loudness
(loudness), speech presence (speech), detected motion (motion), face-to-
frame dimension ratio (face ratio), perceived lightness, and brightness.
These audiovisual features were extracted using both manual and auto-
matic annotation tools.

In order to decode these continuous features from the fMRI data we
used linear kernel ridge regression (KRR) with generalized cross-
validation (GCV) (Golub et al., 1979). We chose a kernel version since
it is particularly efficient when the number of data points is considerably
lower than the number of measurable properties, or features (in our case
time repetitions and number of voxels, respectively; see Golub et al.,
1979). The combination of L2-norm penalization with GCV is relatively
computationally inexpensive when compared with iterative kernel
methods such as Relevance Vector Regression and Gaussian Processes,
while still achieving good performance, and it allows for fast permuta-
tions in order to ascertain non-parametrically statistical significance
(Valente et al., 2014). We used a linear kernel for several reasons. First,
by using a linear model we allow for the reconstruction of descriptors of
specific features as linear combinations the weighted BOLD time series,
with the advantage of a straightforward interpretation of the fMRI
models relative to non-linear kernels and other complex pattern recog-
nition methods such as artificial neural networks. Second, the optimi-
zation of non-linear kernel hyperparameters would increase the
computational time of several orders of magnitude. Finally, the large
number of dimensions, compared to the available samples in our prob-
lem, makes it difficult to exploit the increased flexibility provided by
non-linearities, increasing the risk of overfitting. An alternative to linear
kernel ridge regression could be to use a linear ridge regression after
projecting the data onto the subspace spanned by the principal compo-
nents, which would result in similar computational burden if all the
principal components are retained.

In addition to the extraction of spatial brain models of continuous
audiovisual features, we temporally optimized the models. In specific, we
applied time-lag optimization following evidence that multi-voxel
pattern analysis (MVPA) classification may be improved by fitting
different temporal hemodynamic response models to different brain re-
gions (Kohler et al., 2013). Due to the high dimensionality of the problem
we used simulated annealing (Kirkpatrick et al., 1983), a heuristic al-
gorithm based on thermodynamic principles, to optimize the temporal
parameters of the decoding models. This procedure was performed on a
cross-validation subset of the data.

Thus, we produced spatio-temporal decoding maps, which assign
optimized lag and weight values to every voxel in the brain to reconstruct
specific features. Our study examined the extent to which various au-
diovisual features can be robustly and reliably reconstructed by these
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