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A B S T R A C T

Micro-electrocorticograph (μECoG) arrays offer the flexibility to record local field potentials (LFPs) from the
surface of the cortex, using high density electrodes that are sub-mm in diameter. Research to date has not pro-
vided conclusive evidence for the underlying signal generation of μECoG recorded LFPs, or if μECoG arrays can
capture network activity from the cortex. We studied the pervading view of the LFP signal by exploring the spatial
scale at which the LFP can be considered elemental. We investigated the underlying signal generation and ability
to capture functional networks by implanting, μECoG arrays to record sensory-evoked potentials in four rats. The
organization of the sensory cortex was studied by analyzing the sensory-evoked potentials with two distinct
modeling techniques: (1) The volume conduction model, that models the electrode LFPs with an electrostatic
representation, generated by a single cortical generator, and (2) the dynamic causal model (DCM), that models the
electrode LFPs with a network model, whose activity is generated by multiple interacting cortical sources. The
volume conduction approach modeled activity from electrodes separated < 1000 μm, with reasonable accuracy
but a network model like DCM was required to accurately capture activity > 1500 μm. The extrinsic network
component in DCM was determined to be essential for accurate modeling of observed potentials. These results all
point to the presence of a sensory network, and that μECoG arrays are able to capture network activity in the
neocortex. The estimated DCM network models the functional organization of the cortex, as signal generators for
the μECoG recorded LFPs, and provides hypothesis-testing tools to explore the brain.

1. Introduction

Technological developments in electrophysiology have given neuro-
scientists the freedom to investigate the brain from new perspectives.
Scalp electroencephalography (EEG) has been used to noninvasively re-
cord electrical activity throughout the cortex, facilitating the investiga-
tion of frequency components recorded globally; however, EEG is limited
in spatial resolution (Nunez and Srinivasan, 2006; Niedermeyer and da
Silva, 2005). Penetrating electrodes can record spiking activity from in-
dividual neurons (Nicolelis et al., 1995; O'Keefe and Dostrovsky, 1971) or
local field potentials (LFPs) from a small population of neurons located
within a few hundred μm radius (Mitzdorf, 1985; Katzner et al., 2009;
Lind�en et al., 2011). Intracortical recordings offer precision, specificity,

and have been well studied in animals. However, the invasive nature of
this technology raises a number of unresolved issues, including reli-
ability, safety, and biocompatibility (Nicolelis and Lebedev, 2009).
Electrocorticographic (ECoG) arrays, also known as intracranial EEG,
record LFPs with higher spatial resolution and signal-to-noise ratio (SNR)
than scalp EEG (Crone et al., 1998; Leuthardt et al., 2004). In addition,
ECoG arrays record potentials with less cortical damage and less signal
variability than intracortical recordings. MicroECoG (μECoG) arrays are
ECoG arrays fabricated at a smaller scale, which decreases the crani-
otomy size required for insertion. MicroECoG arrays can record LFPs with
higher SNR than ECoG (Viventi et al., 2010), have been reliably and
safely implanted for long periods of time (Schendel et al., 2014), and are
adaptable to brain computer interface (Thongpang et al., 2011) and
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optogenetic technologies (Richner et al., 2014; Park et al., 2014).
Research to date has not provided conclusive evidence as to the

neural activity that generates the LFPs recorded from μECoG arrays.
Buzsaki et al. (2012) argued that the principal contribution to LFPs is the
synaptic transmembrane current from collective groups of neurons;
however, multiple distinct neuronal states can generate identical LFPs.
Mapping LFPs back to the corresponding signal generators (or sources1)
is an inverse problem (Nunez and Srinivasan, 2006; Alifanov, 1974), that
is mathematically ill-posed, due to the lack of a one-to-one mapping.
Investigators commonly undertake a two-step approach to deal with the
ill-posed inverse problem. The first step constitutes solving the forward
problem; the forward problem involves correlating global and local
events, allowing the investigator to determine the contribution of the
synaptic and non-synaptic mechanisms to the global LFPs (Einevoll et al.,
2007; Li and Ascoli, 2008). The second step is to then use the estimated
relationship between local and global events to gain insight into the local
activity; however, the technical means to undertake this second step are
still emerging. Buzsaki et al. suggested using experimentally observed
temporal patterns to time-lock neuronal activity and generate LFPs from
a network model of neurons as a possible way forward. We undertook the
second step, by analyzing μECoG LFPs with a network model of neurons,
to gain insight into the local micro-architecture of a sensory
cortical region.

The underlying signal generation of the μECoG LFPs resides within
the neocortex, whose structure has been determined to be comprised of
cortical columns, based on neurophysiological studies of local neuronal
connectivity (Mountcastle, 1997; Hubel and Wiesel, 1974; Oroquieta
et al., 2012). Columnar organization has been established anatomically;
however, the disparate definitions of the diameter of a cortical column,
shown in Table 1, provide a challenge to determining its functional
equivalent (Horton and Adams, 2005; da Costa and Martin, 2010; Bastos
et al., 2012).

We set out to investigate the underlying signal generation of μECoG
recorded LFPs to determine if μECoG recorded LFPs could capture some
of the functional structure of the neocortex. To that end, we recorded
sensory evoked LFPs epidurally from the cortical surface, using thin-film
bilateral μECoG array technology fabricated at the Neural Interface
Technology Research and Optimization (NITRO) lab (Richner et al.,
2014). Each μECoG electrode was 200 μm in diameter, while the
center-to-center distance between adjacent electrodes was 750 μm. The
dimensions of this state-of-the-art μECoG array provides a means to
analyze LFPs recorded over a range of distances and spatial resolutions to
address the extent of cortical column connectivity.

We analyzed sensory evoked LFPs recorded from μECoG arrays with
two distinct computational models: a volume conduction model and a
network based model. These computational models use distinct solu-
tions to the forward problem, providing different approaches to gain
insight into local activity from global events. The Maxwellian volume
conduction model is often used to model potentials from ECoG arrays
because of its simplicity and reasonable accuracy in modeling activity in
nearby electrodes (Nunez et al., 1997; Towle et al., 1999; Robinson,
2003). The volume conduction model assumes LFPs recorded over the
array are produced by a single local cortical generator via electrostatics.
The electrode with the highest energy is typically identified as the
location for the cortical generator that produces LFPs throughout the
array. In contrast, dynamic causal models (DCM) (Friston et al., 2003)
and multi-variate auto-regressive models (Chang et al., 2012) are
generative network models of neurons, as recommend by Buzsaki et al.
(2012), and assume the potentials are generated by multiple interact-
ing sources.

In this manuscript, we compare the single-source volume conduction
model with a multiple-interacting-sources DCM-based network model.
DCM was developed for EEG and magnetoencephalogram analysis and

uses cortical-column-inspired neural mass models (NMMs) to estimate
connectivity between modeled sources and predict LFPs in the pop-
ulations2 and electrodes (David et al., 2006). NMMs are appropriate for
sensory evoked LFPs, since the stimulus is modeled to innervate the spiny
stellate population of a specified region, and the cortical circuitry re-
sponds with large synchronous spatiotemporal patterns. Bastos et al.
(2012, 2015). established a relationship between local and global ac-
tivity, rooted in neurophysiological evidence, to develop the canonical
microcircuit (CMC) for DCM. They analyzed ECoG potentials over the
visual cortex in non-human primates, scaling DCM down to ECoG di-
mensions, with regions located 6–12 mm apart. The CMC incorporates an
additional pyramidal population for each source, providing a necessary
vertical dimension to model μECoG potentials. We employ the CMC in
DCM for our network model analysis.

We explored the connectivity and signal generation of cortical sources
by comparing the performance of a single-source volume conduction
model to a multiple-interacting-sources DCM-based network model in
predicting LFPs recorded from a μECoG array with electrodes located at
distances that range 750–3000 μm apart. We investigated the spatial
dimensions over which the volume conduction model and DCM accu-
rately predict the recorded electrical potentials. We developed DCM-
shotgun, a method that increases the likelihood of converging to a model
with high fidelity and can be generalized to analyze other datasets
generated from animal brain recordings. We compared the performance
of a fully connected DCM to an unconnected DCM version to assess the
relevance of the extrinsic network component. We implemented boot-
strap methods to assess the stability of the parameters of a sensory
network estimated by DCM.

We found that activity from electrodes separated < 1000 μm can be
described by the single source volume conduction model with reasonable
accuracy, but that electrode separations greater than 1500 μm require a
network model, like DCM, to accurately predict the potentials observed.
We also found that DCM's extrinsic network is the key component in
modeling the potentials over the entire array, strongly suggesting the
presence of a network of cortical sources independently interacting.
Finally, the sensory network for two cortical sources was estimated with
DCM to illustrate the local organization of the sensory cortex and provide
likely signal generators responsible for the LFPs recorded from the
μECoG array.

This paper is organized as follows. Section 2 describes the data
acquisition and preprocessing methods, defines the volume conduction
model and the DCM, and presents the objective metrics used for assessing
the models. Section 3 presents model performance as a function of
electrode separation, identifies the relevance of the network component
in DCM, and illustrates the estimated sensory network between two
cortical sources. Section 4 discusses the relevance and interpretation of
the results. Brief concluding remarks are given in section 5. Notation used
throughout the paper is introduced here. Boldface symbols represent
vectors, while superscript T denotes vector transpose. Given data v, the
sample mean is written as v and model estimate as bv. E[a] denotes the
expectation of a random variable a. x � N ðμ;ΣÞ means the vector x is
normally distributed with mean μ and covariance Σ.

2. Materials and methods

2.1. Experimental setup

We recorded sensory evoked potentials using μECoG arrays in four
rats, with the following experimental procedure, illustrated in Fig. 1. For
each rat, we fabricated a platinum μECoG array with the following
specifications: 4 � 4 grid, 200 μm site diameter, 750 μm site-to-site
spacing, and 50 kOhms nominal impedance at 1 kHz (Thongpang
et al., 2011). We then implanted bilateral μECoG arrays in each rat, under

1 Generators and sources are used interchangeably throughout. 2 Populations refer to a particular type of cell populations.
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