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A B S T R A C T

The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While
convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image.
Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly
weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or
nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain
during the resting state. This model is estimated using a Bayesian framework which accurately quantifies un-
certainty and automatically finds the most accurate and parsimonious combination of basis functions describing
the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal
dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical
representations of the striatum derived from structural MRI, and two different soft functional parcellations of the
striatum derived from resting-state fMRI (rfMRI). We found that a combination of ~50 multiscale functional basis
functions accurately represented the striatal dopamine activity, and that functional basis functions derived from
an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most
parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI
were more accurate than both structural and generic basis sets in representing dopamine function in the striatum
for a fixed model order. We demonstrate the translational validity of our framework by constructing classification
models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only
basis set that performs well across all comparisons and performs better overall than the classical voxel-based
approach. This spatial model constitutes an elegant alternative to voxel-based approaches in neuroimaging
studies; not only are their atoms biologically informed, they are also adaptive to high resolutions, represent high
dimensions efficiently, and capture long-range spatial dependencies, which are important and challenging ob-
jectives for neuroimaging data.

1. Introduction

Neuroimaging techniques have become invaluable tools for clinical
research and practice in many brain disorders thanks to their ability to
noninvasively investigate brain structure and function with relatively

high spatial resolution. Data acquisition techniques such as MRI and PET
allow the rich spatial structure that emerges from interactions between
brain regions to be probed in high detail. However, the predominant
analysis approaches that rely on the voxel as the unit of analysis do not
take full advantage of this source of information. In the classical mass-
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univariate approach, which entails fitting independent temporal models
at each sampled brain location (i.e. each voxel), spatial dependencies are
effectively disregarded or dealt with suboptimally (e.g. by smoothing the
data). This ignores an important source of information encoded by sta-
tistical dependencies between brain regions. The mass-univariate
approach also generates a large number of statistical estimates that
depend arbitrarily on the voxel size in the image. These spatially unin-
formed estimates need to be combined and inferred upon using complex
post-hoc correction methods such as random field theory (Nichols, 2012;
Worsley et al., 1996), the accuracy of which has been recently called into
question (Eklund et al., 2016). Voxel-based features are also potentially
suboptimal for multivariate approaches such as pattern recognition
(Wolfers et al., 2015; Mwangi et al., 2014) essentially because voxels lack
biological meaning. While pattern recognition approaches can make use
of correlations between brain regions, the nature of neuroimaging data
often leads to severely ill-posed problems (e.g. with hundreds of thou-
sands of features and tens to hundreds of samples). Therefore,
whole-brain voxel-based approaches are not optimal for discriminating
conditions if the underlying signal is localized to particular regions or
networks. For multivariate approaches as well as mass-univariate ap-
proaches it is therefore desirable to find parsimonious representations of
brain structure or function that can more faithfully represent the un-
derlying signal. Such models may predict clinically-relevant outcomes
more accurately than voxel-based approaches and may be more inter-
pretable in the sense that discriminating features may be cleanly related
to underlying neuronal units of computation.

In light of these considerations, there have been some proposals to
take spatial dependencies into account using multivariate approaches,
and the field of spatial statistics offers attractive methods in this respect.
Various discrete spatial models have been proposed for neuroimaging
data (e.g., Penny et al., 2005; Woolrich et al., 2004) but these generally
only provide local smoothing for the parameter estimates from mass-
univariate analysis. They do not accommodate long-range de-
pendencies that are intrinsic to neuroimaging data, nor overcome the
arbitrary dependence on voxel size or the intricate structure-shape re-
lationships of the brain. A more accurate and flexible approach is the
spatial mixedmodel, in which an additional term, called a spatial random
effect, is added to the model. Here, spatial dependencies are typically
modeled using a continuous (usually Gaussian) spatial random field. The
covariance matrix of this term describes the spatial correlation between
allocations (e.g., voxels), and the inversion of this matrix is necessary to
obtain suitable estimates under this model (Wikle and Royle, 2002). The
immediate problem of applying this approach to neuroimaging data is
the computational burden of this matrix inversion. Accordingly, this
approach has principally been used in the context of restricted regions of
interest (Bowman et al., 2008; Groves et al., 2009) although some studies
have made use of data reduction techniques to approximate the under-
lying spatial process (Hyun et al., 2014; Zhu et al., 2014). An efficient
alternative to model high-dimensional spatial processes is the use of low
rank models, in which the covariance matrix is approximated by a
reduced number of basis functions (Cressie and Johannesson, 2008).
Most commonly, these basis functions are taken to be nonlinear func-
tions, such as radial basis functions (RBFs), b-splines, or wavelets, that
are placed all over the spatial domain. In spatial applications, multiple
resolutions are typically used to capture both short and long ranges of
spatial dependencies.

In this work, we introduce a spatial statistical modelling framework
that uses data-driven basis functions to model neuroimaging data. These
basis functions are derived from measures of brain function, and there-
fore more closely reflect the underlying biology relative to generic basis
functions. While various spatial basis sets are possible, we propose to use
a soft multiscale functional parcellation derived from resting-state fMRI
(rfMRI). For this, we employ a parcellation strategy known as Instanta-
neous Connectivity Parcellation (ICP, van Oort et al., 2016). Our ratio-
nale is based on emerging evidence of temporally independent, spatially
overlapping, subnetworks within anatomical regions and functional

networks in the human brain (Smith et al., 2012). These subnetworks are
believed to represent fine-scale units of computation used by the brain for
processing. We use these subnetworks as basis function because of their
correspondence with biology. There are various strategies that we could
employ to extract these subnetworks (e.g., Yeo et al., 2011; Craddock
et al., 2012; Shen et al., 2013; Gordon et al., 2016; Glasser et al., 2016),
but the ICP approach is well suited to deriving such subnetworks as it
combines three features: first, ICP sub-divides brain networks on the
basis of fine-grained temporal similarities instead of temporally averaged
correlations. Second, ICP does not impose a spatial contiguity constraint,
meaning that brain regions that are not spatially adjacent can still
participate in the same subnetwork. Finally, ICP follows a top-down
strategy for parcellation, which generates sets of parcels at different
levels of granularity which allows us to model multiple ranges of spatial
dependencies in the image. We compare this approach to a variety of
basis sets including: i) generic isotropic bisquare functions commonly
used in spatial applications (Cressie and Johannesson, 2008); ii) struc-
tural parcellations of the striatum derived from two different atlases; and
iii) functional parcellations of the striatum obtained from Independent
Component Analysis (ICA).

For model fitting, we propose to use a Bayesian regression framework
to automatically find a linearly weighted sum of basis functions that
accurately fits an imaged brain region (or to the whole brain). The
resulting basis function fit and the corresponding weights can be used in
a second level of analysis to investigate the phenotype of the imaged
subjects. To illustrate, we test our framework to predict quantitative
SPECT data of the dopamine transporter (DAT) availability in the healthy
striatum. DAT imaging allows assessing the integrity of presynaptic
dopaminergic neurons of the nigrostriatal pathway and it is widely used
in the clinical practice of movement disorders (Tatsch and Poepperl,
2013). We provide an example of how this method can be applied to a
real clinical application. For this, we use the DAT data to automatically
differentiate between different diagnosed sub-cohorts corresponding to
different parkinsonian disorders. We hypothesized that spatial models
that are informed by brain function would be superior to spatial models
that are informed only by the structural anatomy and to generic models
that do not incorporate knowledge of the underlying biology. Therefore,
we compare functionally informed basis functions derived from resting
state fMRI to anatomical basis functions derived from two widely used
anatomical parcellations of the striatum and also to generic basis func-
tions commonly used in spatial applications. The clinical application we
have chosen provides an exacting test of this hypothesis for three reasons:
(i) the spatial resolution of SPECT is low relative to alternative methods
(e.g. fMRI) meaning that clinically relevant spatial dependencies are
difficult to detect; (ii) anatomical subdivisions are well-defined for the
striatum, which biases the analysis in favour of anatomical parcellations
and (iii) the data modality used to create the basis set (BOLD fMRI,
indirectly measuring oxygen consumption) measures different aspects of
the underlying biology relative to the clinical biomarker (DAT SPECT,
measuring dopamine function). Therefore the method must learn de-
pendencies that generalize across different aspects of brain function.

Our approach is related to several lines of work in the neuroimaging
literature. Gershman et al. (2011) developed a spatial modeling approach
for neuroimaging data, referred to as topographic latent source analysis
(TLSA). In TLSA, fMRI data are modeled as a superposition of image
sources constructed from adaptive RBFs. Like our approach, TLSA ab-
stracts away from the voxel as a unit of analysis, instead performing in-
ferences over underlying neuroanatomical regions. However, in TLSA
generic isotropic RBFs are used that do not map cleanly onto their bio-
logical sources (i.e. brain nuclei). The approach also requires running
heavy optimization machinery in order to fit a given data set. Our
approach is also related to dictionary learning approaches (e.g. Varo-
quaux et al., 2011) and to approaches that model neuroimaging data
using multi-scale parcellations (e.g. Jennaton et al., 2012; Bellec, 2013).
These approaches generally aim to segment a set of neuroimaging data
into subject-specific or group level atlases. In contrast, our approach
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