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A B S T R A C T

Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) technique used for
studying microstructural changes in the white matter. As with many other imaging modalities, DTI images suffer
from technical between-scanner variation that hinders comparisons of images across imaging sites, scanners and
over time. Using fractional anisotropy (FA) and mean diffusivity (MD) maps of 205 healthy participants acquired
on two different scanners, we show that the DTI measurements are highly site-specific, highlighting the need of
correcting for site effects before performing downstream statistical analyses. We first show evidence that
combining DTI data from multiple sites, without harmonization, may be counter-productive and negatively im-
pacts the inference. Then, we propose and compare several harmonization approaches for DTI data, and show that
ComBat, a popular batch-effect correction tool used in genomics, performs best at modeling and removing the
unwanted inter-site variability in FA and MD maps. Using age as a biological phenotype of interest, we show that
ComBat both preserves biological variability and removes the unwanted variation introduced by site. Finally, we
assess the different harmonization methods in the presence of different levels of confounding between site and
age, in addition to test robustness to small sample size studies.

1. Introduction

Diffusion tensor imaging (DTI) is a well-established magnetic reso-
nance imaging (MRI) technique for studying the white matter (WM)
organization and tissue characteristics of the brain. Diffusion tensor
imaging has been used extensively to study both brain development and
pathology; see Alexander et al. (2007) for a review of DTI and several of
its applications. In studies assessing white matter tissue characteristics,
two commonly reported complementary scalar maps are the mean

diffusivity (MD), which assesses the degree to which water diffuses at
each location, and fractional anisotropy (FA), which measures the
coherence of this diffusion in one particular direction. Together, MD
and FA provide complementary description of white matter
microstructure.

With the increasing number of publicly availably neuroimaging da-
tabases, a crucial goal is to combine large-scale imaging studies to in-
crease the power of statistical analyses to test common biological
hypothesis. For instance, for life-span studies, combining data across sites
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and age ranges is essential for obtaining the necessary number of par-
ticipants of each age. The success of combining multi-site imaging data
depends critically on the comparability of the images across sites. As with
other imaging modalities, DTI images are subject to technical variability
across scans, including heterogeneity in the imaging protocol, variations
in the scanning parameters and differences in the scanner manufacturers
(Zhu et al., 2009, 2011). Among others, the reliability of FA and MD
maps have been shown to be affected by angular and spatial resolution
(Zhan et al., 2010; Alexander et al., 2001; Kim et al., 2006), the number
of diffusion weighting directions (Giannelli et al., 2009), the number of
gradient sampling orientations (Jones, 2004), the number of b-values
(Correia et al., 2009), and the b-values themselves.

In the design of multi-site studies, defining a standardized DTI pro-
tocol is a first step towards reducing inter-scanner variability. However,
even in the presence of a standardized protocol, systematic differences
between scanner manufacturers, field strength and other scanner char-
acteristics will systematically affect the DTI images and induce inter-
scanner variation. Image-based meta analysis (IBMA) techniques,
reviewed in Salimi-Khorshidi et al. (2009), are common methods for
combining results from multi-site studies with the goal of testing a sta-
tistical hypothesis. IBMA methods circumvent the need of harmonizing
images across sites by performing site-specific statistical analyses and
combining results afterwards. Fisher's p-value combining method and
Stouffer's z-transformation test, applied to z or t-maps, are two common
IBMA techniques. Fixed-effect models based on (possibly) normalized
images, and mixed-effect models to model the inter- and intra-site vari-
ability, are other common techniques for the analysis of multi-site data.
Indeed, meta-analysis methods have shown great promise for studies
with a large number of participants at each site. For instance, the
ENIGMA-DTI working group has been successfully using and validating
meta-analysis techniques on such multi-site DTI data (Jahanshad et al.,
2013; Kochunov et al., 2014).

Meta-analysis techniques have several limitations, however. First,
study-specific samples might not be sufficient to estimate the true bio-
logical variability in the population (Mirzaalian et al., 2016). As
described by De Wit et al. (2014), adjusting for variability at the
participant level is problematic in meta-analyses, since only group-level
demographic and clinical information is available. Another limitation
is that for a multi-site study, computing site-specific summary statistics
will be affected by unbalanced data. For instance, the calculation of a
variance using unbalanced datasets is highly affected by the ratio case-
s/controls in the sample (Linn et al., 2016b). Another limitation, for
imaging studies with small sample sizes, the parameters of the z-score
transformations cannot be robustly estimated, yielding suboptimal sta-
tistical inferences.

Mega-analyses, in which the imaging data are combined before per-
forming statistical inferences, have the potential to increase power
compared to meta-analyses (De Wit et al., 2014). In addition, pooling
imaging data across studies has the benefit of enriching the clinical
picture of the sample by increasing the variability in symptom profiles
(Turner, 2014) and demographic variables. This is particularly important
for age-span studies. However, pooling data across studies may increase
the heterogeneity of the imaging measurements by introducing unde-
sirable variability caused by differences in scanner protocols. Harmoni-
zation of the pooled data is therefore necessary to ensure the success of
mega-analyses. The DTI harmonization technique proposed in Mirzaa-
lian et al. (2016) is a first step towards that direction. The method is
based on rotation invariant spherical harmonics (RISH) and combines the
unprocessed DTI images across scanners. Unfortunately, a major draw-
back of the method is that it requires DTI data to have similar acquisition
parameters across sites, an assumption often infeasible in multi-site
observational analyses.

In this work, we adapted and compared several statistical approaches
for the harmonization of DTI studies that were previously developed for
other data types: Functional normalization (Fortin et al., 2014), RAVEL
(Fortin et al., 2016a), Surrogate variable analysis (SVA) (Leek and Storey,

2007) and ComBat (Johnson et al., 2007), a popular batch adjustment
method developed for genomics data. We also include a simple method
that globally rescales the data for each site using a z-score transformation
map common to all features, which we refer to as “global scaling”. For the
evaluation of the different harmonization techniques, we use DTI data
acquired as a part of two large imaging studies ((Satterthwaite et al.,
2014) and (Ghanbari et al., 2014)) with images acquired on different
scanners, using different imaging protocols. The participants are teen-
agers, and were matched across studies for age, gender, ethnicity, and
handedness.

We first analyze site-related differences in the FA, MD, radial
diffusivity (RD) and axial diffusivity (AD) measurements, and show
evidence of significant site effects that differ across the brain. This
motivates the need for a harmonization technique that is sensitive to
region-specific scanner effects. Then, we harmonize the data with
several proposed harmonizations, and evaluate their performance using
a comprehensive evaluation framework. We show that the ComBat is
the most effective harmonization techniques as it removes unwanted
variation induced by site, while preserving between-subject biological
variability. ComBat is a promising harmonization technique for other
imaging modalities since it does not make assumptions about the origin
of the site effects.

2. Methods

2.1. Data

We consider two DTI studies from two different scanners. To inves-
tigate the effect of scanner variations on the DTI measurements, we
matched the participants for age, gender, ethnicity and handedness,
resulting in 105 participants retained in each study for further analysis.
The characteristics of each dataset are described below.

Dataset 1 (Site 1): PNC dataset. We selected a subset of the Phila-
delphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014),
and included 105 healthy participants from 8 to 19 years old. 83 of the
participants were males (22 females), and 75 participants were white (30
non-white). The DTI data were acquired on a 3T Siemens TIM Trio
whole-body scanner, using a 32 channel head coil and a twice-refocused
spin-echo (TRSE) single-shot EPI sequence with the following parame-
ters: TR ¼ 8100 ms and TE ¼ 82 ms, b-value of 1 000 s/mm2, 7 b ¼ 0
images and 64 gradient directions. The images were acquired at
1.875 � 1.875 � 2 mm resolution. During the same session, structural
T1-weighted (T1-w) MP-RAGE images were also acquired with parame-
ters TR ¼ 1810 ms, TE ¼ 3.5 ms, TI ¼ 1100 ms and FA ¼ 9�, at
0.9375 � 0.9375 � 1 mm resolution.

Dataset 2 (Site 2): ASD dataset. The dataset contains 105 typically
developing controls (TDC) from a study focusing on autism spectrum
disorder (ASD) (Ghanbari et al., 2014). 83 of the participants were males
(22 females), and 79 participants were white (26 non-white). The age of
the participants ranges from 8 to 18 years old. The DTI data were ac-
quired on a Siemens 3T Verio scanner, using a 32 channel head coil and a
single shot spin-echo planar sequence with the following parameters:
TR ¼ 11,000 ms and TE ¼ 76 ms, b-value of 1 000 s/mm2, 1 b ¼ 0 image
and 30 gradient directions. The images were acquired at 2 mm isotropic
resolution. Structural T1-w MP-RAGE images were also acquired with
parameters TR ¼ 1900 ms, TE ¼ 2.54 ms, TI ¼ 900 ms and FA ¼ 9� at
resolution 0.8 mm � 0.8 mm � 0.9 mm.

For benchmarking the different harmonization procedures, we use
two additional subsets of the PNC database, with participants who differ
from Dataset 1:

Independent Dataset 1: The dataset contains 292 additional healthy
participants from the PNC with the same age range as Dataset 1 and
Dataset 2 (8–18 years old).
Independent Dataset 2: The dataset contains 105 additional healthy
participants from the PNC with an age range of 14–22 years old.
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