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A B S T R A C T

A defining feature of the basal ganglia is their anatomical organization into multiple cortico-striatal loops. A central tenet of this architecture is the idea that local
striatal function is determined by its precise connectivity with cortex, creating a functional topography that is mirrored within cortex and striatum. Here we formally
test this idea using both human anatomical and functional imaging, specifically asking whether within striatal subregions one can predict between-voxel differences in
functional signals based on between-voxel differences in corticostriatal connectivity. We show that corticostriatal connectivity profiles predict local variation in reward
signals in bilateral caudate nucleus and putamen, expected value signals in bilateral caudate nucleus, and response effector activity in bilateral putamen. These data
reveal that, even within individual striatal regions, local variability in corticostriatal anatomical connectivity predicts functional differentiation.

1. Introduction

The basal ganglia, the central structures in reward-guided action se-
lection, exhibit a remarkably intricate architecture whereby inputs from
cortex are topographically organized into multiple cortico-striatal loops
(Alexander et al., 1986). Rather than a division into neatly segregated
pathways, axons from multiple cortical regions converge in overlapping
parts of the striatum (Averbeck et al., 2014; Haber, 2010). This places the
striatum at a crossroads of information processing thought to drive,
amongst other functions, reward-guided behaviors (Averbeck et al.,
2014; Haber and Behrens, 2014). This arrangement is somewhat at odds
with an otherwise rigid anatomical parcellation of the striatum into nu-
cleus accumbens, caudate nucleus and putamen (Voorn et al., 2004).
Here we ask whether knowing the corticostriatal inputs to each voxel of
the striatum allows us to predict functional activity within that voxel. If
we can do so evenwithin classical subregions of the striatum – the caudate
nucleus and the putamen – then this suggests that a detailed knowledge
of structural connectivity can provide a more detailed guide to local
function than does anatomy alone.

We tested our hypothesis using a methodology first reported in a
study within the visual domain (Saygin et al., 2012). This previous study
reported an accurate prediction of functional responses to faces versus

scenes for individual voxels in the fusiform gyrus based on structural
connectivity fingerprints of these very same voxels. Although this
approach has been extended to visual responses in other regions of cortex
(Osher et al., 2015), to the best of our knowledge it has not been applied
to higher cognitive functions or to an examination of subcortical struc-
tures. Given the great diversity of inputs into the striatum—spanning
most of cortex (Alexander et al., 1986)—its subregions are particularly
well-suited for an examination of such structure-function relationships.
Specifically, we examined the caudate nucleus and putamen during an
instrumental reinforcement learning task using functional and diffusion-
weighted magnetic resonance imaging (MRI). To validate our approach
we examined motor effector activity related to hand and foot actions. We
then used this method to predict individual intra-region variability in the
expression of reward and expected value signals from individual corti-
costriatal connectivity profiles, finding a dependence of function on each
voxel's distinct pattern of cortical connectivity.

2. Materials and methods

2.1. Participants

Twenty-four adults participated in the experiment (14 female, 10
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male; age range 18–36 years; mean ± SD ¼ 22.5 ± 4.5 years). All par-
ticipants were right hand dominant, had no history of psychiatric or
neurological disorder, were not taking any medication known to affect
neural or cognitive function, had normal or corrected-to-normal vision
and passed the safety requirements to enter a MRI scanner. All subjects
provided written informed consent prior to the start of the experiment,
which was approved by the Research Ethics Committee at University
College London (UK). One further subject was excluded due to excessive
movement (images could not be realigned successfully).

2.2. Overview of the approach

We tested the hypothesis that corticostriatal input into the caudate
nucleus and putamen reliably predicts functional responses during
instrumental learning. To do so we estimated, for each voxel in bilateral
caudate nucleus and putamen, functional activation to motor responses,
reward and expected value activations during a 2-armed bandit task.
These same voxels were also characterized in terms of their structural
connectivity to 148 cortical regions using diffusion imaging and proba-
bilistic tractography. We could then predict functional activation from
corticostriatal structural connectivity using a leave-one-out cross-vali-
dation (LOOCV) procedure (Saygin et al., 2012). All these analyses were
performed in subject space, with only summary statistics for each
participant taken to the group level. All reported p-values are two-tailed.

2.3. Task

The task required participants track stimulus-specific action values
and this enabled us to probe how these action values are represented and
updated in neural structures during feedback. Participants had to learn
two separate two-armed bandits which were distinguished by their color

(red or blue; see Fig. 1). On each trial, one of these two slot machines was
presented to the participant, and on half the trials a response was
required using either right index finger or right ball of the foot on a force-
sensitive sensor. Binomial feedback was then presented which indicated
a reward or no-reward. The probability of reward given a bandit s and
action a, pðrjsi; ajÞ where i 2 f1; 2g and j 2 f1;2g, changed slowly over
trials, forcing participants to continue to explore throughout the exper-
iment so as to maximise the total reward obtained.

Participants came to the laboratory for a practice session before the
scanning session. The interval between practice and scanning session
ranged between 1 and 20 days (mean ± SD ¼ 7 ± 4.4 days). At the
practice session, participants performed a full set of 512 trials to
accustom themselves with the task and force buttons. A different set of
reward probabilities was used each day but otherwise the parameters of
the experiment were identical. In the experiment proper, participants
performed 512 trials (approximately 42 min) consisting of 128 red-abort,
red-response, blue-abort, and blue-response trials each (Fig. 1). The order
of these four trial types was randomly determined and only constrained
such that no trial type occurred for more than 3 trials in a row.

2.3.1. Reward probabilities
The ptðrjsi; ajÞ, where t indicates trial number, was generated by a

Gaussian random walk for each action a and stimulus s as follows:

ptþ1

�
rjsi; aj

� ¼ pt
�
rjsi; aj

�þ Nð0; 0:01Þ

where for the first trial the probability was randomly drawn from
U(0.15,0.85). The walks were not generated anew for each partic-
ipant—rather, one set of two pairs was used for each participant's prac-
tice, and one set was used for each participant's scanning session.
However, the assignment of these two pairs to the red and blue slot
machine was randomized, and the subsequent assignment of random
walk to the two available actions was also randomized. This meant that
volatility and availability of reward were matched between participants.
The walks were constrained in their upper (0.85) and lower (0.15) values
and in their mean value (between 0.4 and 0.6). The highest correlation
between any two of the four walks was 0.38, forcing participants to learn
about the value of each option through trial-and-error rather than
inferring the value of one option based on changes in the other.

2.3.2. Trial design
Examining value representations in the BOLD signal at both choice

and outcome phase is challenging due to the sluggishness of the BOLD
response. We considered two trial designs to alleviate this issue: a slow
design where choice and feedback events are separated by at least 8 s
(Behrens et al., 2008), and a fast design in which half the trials are
cancelled at any point between choice and feedback phase (Guitart-
Masip et al., 2012). Pilot data with both designs (data not shown) sug-
gested participants were more accurate at learning reward probabilities
in the fast design, possibly due to task disengagement when participants
are faced with long pauses. Also, a slow design might lead to non-striatal
learning mechanisms dominating behavior, whereas we were specifically
interested in such striatal mechanisms (Foerde et al., 2012). We thus
opted for the fast design. In this paper we do not report correlates of
action values during choice as we were unable to reliably observe its
neural correlates in the striatal regions; we only examine motor re-
sponses, expected value at outcome and reward responses.

2.4. Reinforcement learning models

We used temporal difference (TD) reinforcement learning models to
model participants’ behavior and estimate quantities that might be rep-
resented in the BOLD signal in the striatum, most notably rewards and
action values. Each slot machine i defines a state si where two actions aj
are available. The reward r on trial t can be either 0 or 1. The value of
action j in state i is updated after feedback by:

Fig. 1. Reinforcement learning task involving right hand and right foot responses. (a)
Task design. On half the trials (‘abort’ trials) the slot machine disappeared before the Go
signal and the next trial started; on the other half (‘response’ trials) lights on the slot
machine would turn green, serving as a Go signal; participants responded by pressing
force-sensitive buttons with either their right hand or foot. Feedback was then presented
consisting of either “þ £2.00” in green, or “þ £0.00” in red. (b) The probability of
obtaining the reward varied over time per response, and per slot machine. This meant
participants were required to track 4 random walks that varied between p (reward) of 0.15
and 0.85.
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