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Permutation testing is a non-parametric method for obtaining the max null distribution used to compute corrected
p-values that provide strong control of false positives. In neuroimaging, however, the computational burden of
running such an algorithm can be significant. We find that by viewing the permutation testing procedure as the
construction of a very large permutation testing matrix, T, one can exploit structural properties derived from the
data and the test statistics to reduce the runtime under certain conditions. In particular, we see that T is low-rank
plus a low-variance residual. This makes T a good candidate for low-rank matrix completion, where only a very
small number of entries of T (~ 0.35% of all entries in our experiments) have to be computed to obtain a good
estimate. Based on this observation, we present RapidPT, an algorithm that efficiently recovers the max null
distribution commonly obtained through regular permutation testing in voxel-wise analysis. We present an
extensive validation on a synthetic dataset and four varying sized datasets against two baselines: Statistical
NonParametric Mapping (SnPM13) and a standard permutation testing implementation (referred as NaivePT). We
find that RapidPT achieves its best runtime performance on medium sized datasets (50 < n < 200), with speedups
of 1.5x - 38x (vs. SnPM13) and 20x-1000x (vs. NaivePT). For larger datasets (n > 200) RapidPT outperforms
NaivePT (6x - 200x) on all datasets, and provides large speedups over SnPM13 when more than 10000 per-
mutations (2x - 15x) are needed. The implementation is a standalone toolbox and also integrated within
SnPM13, able to leverage multi-core architectures when available.

1. Introduction assumptions on the data. Further, despite the additional computational

cost, permutation tests have been widely adopted in image analysis Arndt

Nonparametric voxel-wise analysis, e.g., via permutation tests, are
widely used in the brain image analysis literature. Permutation tests are
often utilized to control the family-wise error rate (FWER) in voxel-wise
hypothesis testing. As opposed to parametric hypothesis testing schemes
Friston et al. (1994); Worsley et al. (1992, 1996), nonparametric per-
mutation tests Holmes et al. (1996); Nichols and Holmes (2002) can
provide exact control of false positives while making minimal
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et al. (1996); Halber et al. (1997); Holmes et al. (1996); Nichols and
Holmes (2002); Nichols and Hayasaka (2003) via implementations in
broadly used software libraries available in the community SnPM (2013);
FSL (2012); Winkler et al. (2014).

Running time aspects of permutation testing. Despite the varied advan-
tages of permutation tests, there is a general consensus that the compu-
tational cost of performing permutation tests in neuroimaging analysis

! Data used in preparation of this article was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement List.pdf.

http://dx.doi.org/10.1016/j.neuroimage.2017.07.025

Received 2 June 2017; Received in revised form 11 July 2017; Accepted 12 July 2017
Available online 15 July 2017

1053-8119/© 2017 Elsevier Inc. All rights reserved.


mailto:fgutierrez3@wisc.edu
http://felipegb94.github.io/RapidPT/
http://adni.loni.ucla.edu
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.07.025&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2017.07.025
http://dx.doi.org/10.1016/j.neuroimage.2017.07.025
http://dx.doi.org/10.1016/j.neuroimage.2017.07.025

F. Gutierrez-Barragan et al.

can often be quite high. As we will describe in more detail shortly, high
dimensional imaging datasets essentially mean that for each permutation,
hundreds of thousands of test statistics need to be computed. Further, as
imaging technologies continue to get better (leading to higher resolution
imaging data) and the concurrent slowdown in the predicted increase of
processor speeds (Moore's law), it is reasonable to assume that the
associated runtime will continue to be a problem in the short to medium
term. To alleviate these runtime costs, ideas that rely on code optimi-
zation and parallel computing have been explored Eklund et al. (2011);
Eklund (2012, 2013). These are interesting strategies but any hardware-
based approach will be limited by the amount of resources at hand.
Clearly, significant gains may be possible if more efficient schemes that
exploit the underlying structure of the imaging data were available. It
seems likely that such algorithms can better exploit the resources (e.g.,
cloud or compute cluster) one has available as part of a study and may
also gain from hardware/code improvements that are being reported in
the literature.

Data acquired in many scientific studies, especially imaging and
genomic data, are highly structured. Individual genes and/or individual
voxels share a great deal of commonality with other genes and voxels. It
seems reasonable that such correlation can be exploited towards better
(or more efficient) statistical algorithms. For example, in genomics,
Cheverud (2001) and Li and Ji (2005) used correlations in the data to
estimate the effective number of independent tests in a genome sequence
to appropriately threshold the test statistics. Also motivated by bioin-
formatics problems, Knijnenburg et al. (2009) approached the question
of estimating the tail of the distribution of permutation values via an
approximation by a generalized Pareto distribution (using fewer per-
mutations). In the context of more general statistical analysis, the authors
in Subramanian et al. (2005) proposed Gene Set Enrichment Analysis
(GSEA) which exploits the underlying structure among the genes, to
analyze gene-sets (e.g., where sets were obtained from biological path-
ways) instead of individual genes. If the genes within a gene-set have
similar expression pattern, one may see improvements in statistical
power. This idea of exploiting the “structure” towards efficiency (broadly
construed) was more rigorously studied in Efron and Tibshirani (2007)
and a nice non-parametric Bayesian perspective was offered in Dahl and
Newton (2007). Within neuroimaging, a similar intuition drives Random
Field theory based analysis Taylor and Worsley (2008), albeit the
objective there is to obtain a less conservative correction, rather than
computational efficiency. Recently, motivated by neuroimaging appli-
cations and computational issues, Gaonkar and Davatzikos (2013)
derived an analytical approximation of statistical significance maps to
reduce the computational burden imposed by permutation tests
commonly used to identify which brain regions contribute to a Support
Vector Machines (SVM) model. In summary, exploiting the structure of
the data to obtain alternative efficient solutions is not new, but we find
that in the context of permutation testing on imaging data, there is a great
deal of voxel-to-voxel correlations that if leveraged properly can, in
principle, yield interesting new algorithms.

For permutation testing tasks in neuroimaging in particular, several
groups have recently investigated ideas to make use of the underlying
structure of the data to accelerate the procedure. In a preliminary con-
ference paper (Hinrichs et al. (2013)), we introduced the notion of
exploiting correlations in neuroimaging data via the underlying low-rank
structure of the permutation testing procedure. A few years later, Winkler
et al. (2016) presented the first thorough evaluation of the accuracy and
runtime gains of six approaches that leverage the problem structure to
accelerate permutation testing for neuroimage analysis. Among these
approaches Winkler et al. (2016) presented an algorithm which relied on
some of the ideas introduced by Hinrichs et al. (2013) to accelerate
permutation testing through low-rank matrix completion (LRMC).
Overall, algorithms that exploit the underlying structure of permutation
testing in neuroimaging have provided substantial computa-
tional speedups.
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1.1. Main idea and contributions

The starting point of our formulation is to analyze the entire per-
mutation testing procedure via numerical linear algebra. In particular,
the object of interest is the permutation testing matrix, T. Each row of T
corresponds to the voxel-wise statistics, and each column is a specific
permutation of the labels of the data. This perspective is not commonly
used because a typical permutation test in neuroimaging rarely in-
stantiates or operates on this matrix of statistics. Apart from the fact that
T, in neuroimaging, contains millions of entries, the reason for not
working directly with it is because the goal is to derive the maximum null
distribution. The central aspect of this work is to exploit the structure in T
— the spatial correlation across different voxel-statistics. Such correla-
tions are not atypical because the statistics are computed from anatom-
ically correlated regions in the brain. Even far apart voxel
neighbourhoods are inherently correlated because of the underlying
biological structures. This idea drives the proposed novel permutation
testing procedure. We describe the contributions of this paper based on
the observation that the permutation testing matrix is filled with
related entries.

e Theoretical Guarantees. The basic premise of this paper is that
permutation testing in high-dimensions (especially, imaging data) is
extremely redundant. We show how we can model T as a low-rank plus
a low-variance residual. We provide two theorems that support this
claim and demonstrate its practical implications. Our first result jus-
tifies this modeling assumption and several of the components
involved in recovering T. The second result shows that the error in the
global maximum null distribution obtained from the estimate of T is
quite small.

A novel, fast and robust, multiple-hypothesis testing procedure.
Building upon the theoretical development, we propose a fast and
accurate algorithm for permutation testing involving high-
dimensional imaging data. The algorithm achieves state of the art
runtime performance by estimating (or recovering) the statistics in T
rather than “explicitly” computing them. We refer to the algorithm as
RapidPT, and we show that compared to existing state-of-the-art li-
braries for non-parametric testing, the proposed model achieves
approximately 20x speed up over existing procedures. We further
identify regimes where the speed up is even higher. RapidPT also is
able to leverage serial and parallel computing environments
seamlessly.

A plugin in SnPM (with stand-alone libraries). Given the impor-
tance and the wide usage of permutation testing in neuroimaging
(and other studies involving high-dimensional and multimodal data),
we introduce a heavily tested implementation of RapidPT integrated
as a plugin within the current development version of SnPM — a
widely used non-parametric testing toolbox. Users can invoke Rap-
idPT directly from within the SnPM graphical user interface and
benefit from SnPM's familiar pre-processing and post-processing ca-
pabilities. This final contribution, without a separate installation,
brings the performance promised by the theorems to the neuro-
imaging community. Our documentation Gutierrez-Barragan and
Ithapu (2016) gives an overview of how to use RapidPT within SnPM.

Although the present work shares some of the goals and motivation of
Winkler et al. (2016) — specifically, utilizing the algebraic structure of T —
there are substantial technical differences in the present approach, which
we outline further below. First, unlike Winkler et al. (2016), we directly
study permutation testing for images at a more fundamental level and
seek to characterize mathematical properties of relabeling (i.e., permu-
tation) procedures operating on high-dimensional imaging data. This is
different from assessing whether the underlying operations of classical
statistical testing procedures can be reformulated (based on the corre-
lations) to reduce computational burden as in Winkler et al. (2016).
Second, by exploiting celebrated technical results in random matrix
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