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A B S T R A C T

It is well-established that patterns of functional connectivity (FC) - measures of correlated activity between pairs
of voxels or regions observed in the human brain using neuroimaging - are robustly expressed in spontaneous
activity during rest. These patterns are not static, but exhibit complex spatio-temporal dynamics. Over the last
years, a multitude of methods have been proposed to reveal these dynamics on the level of the whole brain. One
finding is that the brain transitions through different FC configurations over time, and substantial effort has been
put into characterizing these configurations. However, the dynamics governing these transitions are more elusive,
specifically, the contribution of stationary vs. non-stationary dynamics is an active field of inquiry. In this study,
we use a whole-brain approach, considering FC dynamics between 66 ROIs covering the entire cortex. We
combine an innovative dimensionality reduction technique, tensor decomposition, with a mean field model which
possesses stationary dynamics. It has been shown to explain resting state FC averaged over time and multiple
subjects, however, this average FC summarizes the spatial distribution of correlations while hiding their temporal
dynamics. First, we apply tensor decomposition to resting state scans from 24 healthy controls in order to
characterize spatio-temporal dynamics present in the data. We simultaneously utilize temporal and spatial in-
formation by creating tensors that are subsequently decomposed into sets of brain regions (“communities”) that
share similar temporal dynamics, and their associated time courses. The tensors contain pairwise FC computed
inside of overlapping sliding windows. Communities are discovered by clustering features pooled from all sub-
jects, thereby ensuring that they generalize. We find that, on the group level, the data give rise to four distinct
communities that resemble known resting state networks (RSNs): default mode network, visual network, control
networks, and somatomotor network. Second, we simulate data with our stationary mean field model whose
nodes are connected according to results from DTI and fiber tracking. In this model, all spatio-temporal structure
is due to noisy fluctuations around the average FC. We analyze the simulated data in the same way as the
empirical data in order to determine whether stationary dynamics can explain the emergence of distinct FC
patterns (RSNs) which have their own time courses. We find that this is the case for all four networks using the
spatio-temporal information revealed by tensor decomposition if nodes in the simulation are connected according
to model-based effective connectivity. Furthermore, we find that these results require only a small part of the FC
values, namely the highest values that occur across time and ROI pair. Our findings show that stationary dynamics
can account for the emergence of RSNs. We provide an innovative method that does not make strong assumptions
about the underlying data and is generally applicable to resting state or task data from different subject
populations.
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1. Introduction

The question of how large-scale cortical function arises from under-
lying anatomical connectivity has been the object of much investigation
since the advent of non-invasive imaging techniques (Vincent et al.,
2007; Matsui et al., 2011; Wang et al., 2013), in particular since it was
discovered that interareal functional relationships found under task
conditions are maintained during rest (Biswal et al., 1995; Cordes et al.,
2000; Beckmann and Smith, 2004; Fox et al., 2005). With magnetic
resonance imaging (MRI) it is possible to obtain both functional and
structural connectivities (FC and SC, respectively). Although there is
large variability across subjects and sessions, both in SC (Heiervang et al.,
2006) and FC measures (Mueller et al., 2013; Finn et al., 2015), studies
using group averages have revealed general principles of information
processing in the brain (Raichle et al., 2001; Doucet et al., 2011; Van den
Heuvel and Sporns, 2011; Deco and Jirsa, 2012; Haimovici et al., 2013).

In order to connect SC and FC, computational models are an impor-
tant tool for understanding how activity propagates from one node to
another to produce the observed data (Honey et al., 2009; Cabral et al.,
2012; Deco et al., 2014a,b). Most models optimize their parameters by
fitting the average FC. Only recently, the question of whether and how
relevant information can be extracted from the spontaneous fluctuations
in pairwise FC strength, and how to describe the richness of the temporal
dynamics, has received increasing attention in data analysis (Chang and
Glover, 2010; Hutchison et al., 2012; Allen et al., 2012; Tagliazucchi
et al., 2012a,b; Liu et al., 2013; Leonardi and Van de Ville, 2013a; Zalesky
et al., 2014; Yaesoubi et al., 2015) and modelling (Hansen et al., 2014;
Ponce-Alvarez et al., 2015). This has lead to the notion of dynamic
functional connectivity (dFC); dFC has been shown to be relevant for
behavior (Kucyi et al., 2013; Kucyi and Davis, 2014; Barttfeld et al.,
2015; Chen et al., 2015; Yang et al., 2014), development (Madhyastha
and Grabowski, 2014; Hutchison and Morton, 2015; Tagliazucchi et al.,
2016; Marusak et al., 2017), and disorders (Damaraju et al., 2014; Wee
et al., 2016; Miller et al., 2016; Rashid et al., 2014; Sourty et al., 2016;
Demirtaş et al., 2016) and is therefore likely to have a basis in neu-
ral activity.

Here, we use a dynamic mean field model (Wong and Wang, 2006) of
the human cortex which has been shown to reproduce average resting
state (RS) FC (Deco et al., 2014a,b). It is our goal to determine whether
simulated data exhibit FC patterns over time that resemble those of
empirical data. Specifically, we want to test whether resting state net-
works (RSNs) can be explained in this way. To this end, we analyze RS
data from 24 healthy subjects (Schirner et al., 2015) and compare to
simulated data. The cortex is modelled by 66 nodes corresponding to 66
brain areas also used to parcellate the empirical data. The nodes are
connected according to empirical SC derived from the same subjects via
diffusion weighted MRI and fiber tracking.

We use tensor decomposition for extracting relevant and general
features of the spatio-temporal dynamics. This method has been shown to
work well for community detection (Gauvin et al., 2014) and has been
applied to brain data (Cichocki, 2013; Leonardi and Van de Ville, 2013a;
Ponce-Alvarez et al., 2015; Leonardi and Van De Ville, 2013b). Unlike
ICA, which has become the standard method for extracting RSNs
(McKeown et al., 1998; Beckmann et al., 2005; Mantini et al., 2007),
tensor factorization does not assume spatial independence of the un-
derlying components, which is a strong constraint not directly motivated
by the data. Here, such a constraint is not required and the space of
possible solutions is not unnecessarily restricted. Furthermore, it has the
advantage that it can readily be used at our level of spatial resolution.

The modelling approach aims at linking FC and SC. One conceptual
problem of SC is that it provides neither directionality information nor
the weights of the connections. These two points are addressed by the
concept of effective connectivity (EC). SC can be viewed as an approxi-
mation to EC, and it is the latter that is genuinely related to the dynamics
in network models (Friston, 1994). Reversely, underlying connectivity
(SC or EC) can be inferred from FC, or more generally, from the dynamics

found in the data, through the same kinds of models. Gilson et al. (2016)
developed a method to extract EC from RS fMRI data using a noise
diffusion model which possesses simpler dynamics than the DMF. They
show that the EC that accounts best for empirical FC significantly differs
from the SC in a number of points. We use both SC and EC as underlying
connectivity in our model and explore how their properties are linked to
the spatio-temporal patterns found in empirical and simulated data.

2. Methods

2.1. Empirical data

RS fMRI as well as corresponding diffusion weighted (dw) MRI data
were collected from 24 healthy participants (11 female) at the Charit�e
Berlin, Germany, by Petra Ritter and co-workers. The original dataset
consisted of 49 subjects, but we chose only those aged 18–35 years (mean
25.7 years) since it is known that FC changes with age (Meunier et al.,
2009). Each fMRI dataset amounts to 661 time points recorded at
TR ¼ 2s, i.e. about 22 min. In the same session, EEG was also recorded,
but we do not use the data here. RS BOLD was recorded while subjects
were asked to stay awake with their eyes closed, using a 3T Siemens Trim
Trio scanner and a 12 channel Siemens head coil (voxel size
3 � 3 � 3 mm). Voxel time courses are averaged inside ROIs defined by
the Desikan-Killiany atlas (Desikan et al., 2006) as implemented in
FreeSurfer. We removed the areas labeled as corpus callosum on both
sides since they only contain white matter, amounting to 33 cortical ROIs
for each hemisphere. See Table S1 for details.

The diffusion tensors (TR ¼ 750 ms, voxel size 2.3 � 2.3 � 2.3 mm)
computed from the dwMRI data recorded with 64 gradient directions
were subjected to probabilistic fiber tracking as implemented in MRTrix
(Tournier et al., 2004, 2007) in order to obtain structural connectivity
(SC) matrices for each subject. Masks derived from high-resolution T1-
images were used to determine seed- and stop-locations for fibers in the
grey matter/white matter-interface (GWI). SC matrices contain connec-
tion strengths which are estimated by combining the number of
streamlines obtained from the fiber tracking algorithm with various as-
sumptions based on known limitations imposed by anatomy, notably the
size of the GWI of each region. We use the average over all 24 subject in
our simulations.

Further details are available in Schirner et al. (2015).

2.2. Model data

A dynamic mean field approximation of a network of populations of

Fig. 1. Schematic view of dynamic mean field (DMF) model used to simulate synaptic
activity. Each brain area is modelled by a pair of excitatory (E) and inhibitory (I) pools.
The local connectivity is governed by the four weights wEE, wEI;i , wIE, and wII , whereby wEI;i

is adjusted for each population individually so as to keep the firing rates at a low level
(3–10 Hz). Black lines with spheres signify GABA connections, black arrows, NMDA. Grey
arrows are long range connections mediated by AMPA synapses and whose weights are set
by the entries ij of the SC or EC matrix, C.
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