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A B S T R A C T

We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography
(MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with
a robust evaluation metric to estimate the optimal peak-to-peak threshold – a quantity commonly used for
identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which esti-
mates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the
trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are
fully automated thus lending itself to the name Autoreject.

In order to assess the practical significance of the algorithm, we conducted extensive validation and compar-
isons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than
200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against
human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the pre-
processing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked
responses. The automated nature of our method minimizes the burden of human inspection, hence supporting
scalability and reliability demanded by data analysis in modern neuroscience.

Introduction

Magneto-/electroencephalography (M/EEG) offer the unique ability
to explore and study, non-invasively, the temporal dynamics of the brain
and its cognitive processes. The M/EEG community has only recently
begun to appreciate the importance of large-scale studies, in an effort to
improve replicability and statistical power of experiments. This has given
rise to the practice of sharing and publishing data in open archives
(Gorgolewski and Poldrack, 2016). Examples of such large electrophys-
iological datasets include the Human Connectome Project (HCP) (Van
Essen et al., 2012; Larson-Prior et al., 2013), the Physiobank (Goldberger
et al., 2000), the OMEGA archive (Niso et al., 2016) and Cam-CAN
(Taylor et al., 2015). A tendency towards ever-growing massive data-
sets as well as a shift towards common standards for accessing these

databases (Gorgolewski et al., 2016; Bigdely-Shamlo et al.,) is clearly
visible. The UK Biobank project (Ollier et al., 2005) which currently hosts
data frommore than 50,000 subjects is yet another example of this trend.

This has however, given rise to new challenges including automating
the analysis pipeline (Gorgolewski and Poldrack, 2016). Automation will
not only save time, but also allow scalable analysis and reduce the bar-
riers to reanalysis of data, thus facilitating reproducibility. Engemann
and Gramfort (2015) have recently worked towards more automation in
M/EEG analysis pipelines by considering the problem of covariance
estimation, a step commonly done prior to source localization. Yet, one of
the most critical bottlenecks that limits the reanalysis of M/EEG data
remains at the preprocessing stage with the annotation and rejection of
artifacts. Despite being so fundamental to M/EEG analysis given how
easily such data can be corrupted by noise and artifacts, there is currently

* Correspondence to: 46 Rue Barrault, T�el�ecom ParisTech, Universit�e Paris-Saclay, France.
E-mail address: mainak.jas@telecom-paristech.fr (M. Jas).

1 Equal contributions

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier .com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2017.06.030
Received 23 December 2016; Accepted 14 June 2017
Available online 20 June 2017
1053-8119/© 2017 Elsevier Inc. All rights reserved.

NeuroImage 159 (2017) 417–429

mailto:mainak.jas@telecom-paristech.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.06.030&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2017.06.030
https://doi.org/10.1016/j.neuroimage.2017.06.030
https://doi.org/10.1016/j.neuroimage.2017.06.030


no consensus in the community on how to address this particular issue.
In the presence of what we will refer to as bad data, various data

cleaning strategies have been employed. A first intuitive strategy is to
exclude bad data from analysis, to reject it. While this approach is very
often employed, for example, because data cleaning is time consuming,
or out of reach for practitioners, it leads to a loss of data that are costly to
acquire. This is particularly the case for clinical studies, where patients
have difficulties staying still or focusing on the task (Cruse et al., 2012;
Goldfine et al., 2013), or even when babies are involved as subjects
(Basirat et al., 2014).

When working with M/EEG, the data can be bad due to the presence
of bad sensors (also known as channels2) and bad trials. A trial refers here
to a data segment whose location in time is typically related to an
experimental protocol. But here we will also call trial any data segment
even if it is acquired during a task-free protocol. Accordingly, a bad trial
or bad sensor is one which contains bad data. Ignoring the presence of
bad data can adversely affect analysis downstream in the pipeline. For
example, when multiple trials time-locked to the stimulation are aver-
aged to estimate an evoked response, ignoring the presence of a single
bad trial can corrupt the average. The mean of a random vector is not
robust to the presence of strong outliers. Another example quite common
in practice, both in the case of EEG and MEG, is the presence of a bad
sensor. When kept in the analysis, an artifact present on a single bad
sensor can spread to other sensors, for example due to spatial projection.
This is why identifying bad sensors is crucial for data cleaning techniques
such as the very popular Signal Space Separation (SSS) method (Taulu
et al., 2004). Frequency filtering (Widmann et al., 2015) can often sup-
press many low frequency artifacts, but turns out to be insufficient for
broadband artifacts. A common practice to mitigate this issue is to
visually inspect the data using an interactive viewer and mark manually,
the bad sensors and bad segments in the data. Although trained experts
are very likely to agree on the annotation of bad data, their judgement is
subject to fluctuations and cannot be repeated. Their judgement can also
be biased due to prior training with different experimental setups or
equipments, not to mention the difficulty for such experts to allocate
some time to review the raw data collected everyday.

Luckily, popular software tools such as Brainstorm (Tadel et al.,
2011), EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld
et al., 2011), MNE (Gramfort et al., 2013) or SPM (Litvak et al., 2011)
already allow for the rejection of bad data segments based on simple
metrics such as peak-to-peak signal amplitude differences that are
compared to a manually set threshold value. When the peak-to-peak
amplitude in the data exceeds a certain threshold, it is considered as
bad. However, while this seems quite easy to understand and simple to
use from a practitioner’s standpoint, this is not always convenient. In
fact, a good peak-to-peak signal amplitude threshold turns out to be data
specific, which means that setting it requires some amount of trial
and error.

The need for better automated methods for data preprocessing is
clearly shared by various research teams, as the literature of the last few
years can confirm. On the one hand, are pipeline-based approaches, such
as Fully Automated Statistical Thresholding for EEG artifact rejection
(FASTER by Nolan et al. (2010)) which detect bad sensors as well as bad
trials using fixed thresholds motivated from classical Gaussian statistics.
Methods such as PREP (Bigdely-Shamlo et al., 2015), on the other hand,
aim to detect and clean the bad sensors only. Unfortunately, they do not
offer any solution to reject bad trials. Other methods are available to
solve this problem. For example, the Riemannian Potato (Barachant
et al., 2013) technique can identify the bad trials as those where the
covariance matrix lies outside of the “potato” of covariance matrices for
good trials. By doing so, it marks trials as bad but does not identify the
sensors causing the problem, hence not offering the ability to repair

them. It appears that practitioners are left to choose between different
methods to reject trials or repair sensors, whereas they are in fact intri-
cately related problems and must be dealt with together.

Robust regression (Diedrichsen and Shadmehr, 2005) also deals with
bad trials using a weighted average which mitigates the effect of outlier
trials. Trials with artifacts end up with low contributions in the average.
A related approach that is sometimes employed to ignore outlier trials in
the average is the trimmed mean as opposed to a regular mean. The
trimmed mean is a compromise between the mean which offers a high
signal-to-noise ratio (SNR) but can be corrupted by outliers, and the
median which is immune to outliers of extreme amplitudes but has a low
SNR as it involves no averaging. Of course, neither of these strategies are
useful when analyses have to be conducted on single trials. Another
approach, which is also data-driven, is Sensor Noise Suppression (SNS)
(De Cheveign�e and Simon, 2008). It removes the sensor-level noise by
spatially projecting the data of each sensor onto the subspace spanned by
the principal components of all the other sensors. This projection is
repeated in leave-one-sensor-out iterations so as to eventually clean all
the sensors. In most of these methods, however, there are parameters
which are somewhat dataset dependent and must therefore be manu-
ally tuned.

We therefore face the same problem in automated methods as in the
case of semi-automated methods such as peak-to-peak rejection thresh-
olds, namely the tuning of model parameters. In fact, setting the model
parameters is even more challenging in some of the methods when they
do not directly translate into human-interpretable physical units.

This led us to adopt a pragmatic approach in terms of algorithm
design, as it focuses on the tuning of the parameters that M/EEG users
presently choose manually. The goal is, not only to obtain high quality
data but also to develop a method which is transparent and not too
disruptive for the majority of M/EEG users. A first question we address
below is: can we improve peak-to-peak based rejection methods by
automating the process of trial and error? In the following section, we
explain how the widely-known statistical method of cross-validation (see
Fig. 1 for a preview) in combination with Bayesian optimization (Snoek
et al., 2012, Bergstra et al., 2011) can be employed to tackle the problem
at hand. We then explain how this strategy can be extended to set
thresholds separately for each sensor and mark trials as bad when a large
majority of the sensors have high-amplitude artifacts. This process
closely mimics how a human expert would mark a trial as bad during
visual inspection.

In the rest of the paper, we detail the internals of our algorithm,
compare it against various state-of-the-art methods, and position it
conceptually with respect to these different approaches. For this purpose,
we make use of qualitative visualization techniques as well as quantita-
tive reports. In a major validation effort, we take advantage of cleaned up

Fig. 1. Cross-validation error as a function of peak-to-peak rejection threshold on one EEG
dataset. The root mean squared error (RMSE) between the mean of the training set (after
removing the trials marked as bad) and the median of the validation set was used as the
cross-validation metric (Autoreject (global)). The two insets show the average of the trials
as “butterfly plots” (each curve representing one sensor) for very low and high thresholds.
For low thresholds, the RMSE is high because most of the trials are rejected (underfit). At
high thresholds, the model does not drop any trials (overfit). The optimal data-driven
threshold (autoreject, global) with minimum RMSE is somewhere in between. It closely
matches the human threshold.

2 They are not necessarily equivalent in the case of a bipolar montage in EEG. However,
for the sake of simplicity, we shall use these terms interchangeably in this work.
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