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A B S T R A C T

Multivariate pattern analysis (MVPA) methods are now widely used in life-science research. They have great
potential but their complexity also bears unexpected pitfalls. In this paper, we explore the possibilities that arise
from the high sensitivity of MVPA for stimulus-related differences, which may confound estimations of class
differences during decoding of cognitive concepts. We propose a method that takes advantage of concept-
unrelated grouping factors, uses blocked permutation tests, and gradually manipulates the proportion of
concept-related information in data while the stimulus-related, concept-irrelevant factors are held constant. This
results in a concept-response curve, which shows the relative contribution of these two components, i.e. how
much of the decoding performance is specific to higher-order category processing and to lower order stimulus
processing. It also allows separating stimulus-related from concept-related neuronal processing, which cannot be
achieved experimentally. We applied our method to three different EEG data sets with different levels of stimulus-
related confound to decode concepts of digits vs. letters, faces vs. houses, and animals vs. fruits based on event-
related potentials at the single trial level. We show that exemplar-specific differences between stimuli can drive
classification accuracy to above chance levels even in the absence of conceptual information. By looking into time-
resolved windows of brain activity, concept-response curves can help characterize the time-course of lower-level
and higher-level neural information processing and detect the corresponding temporal and spatial signatures of
the corresponding cognitive processes. In particular, our results show that perceptual information is decoded
earlier in time than conceptual information specific to processing digits and letters. In addition, compared to the
stimulus-level predictive sites, concept-related topographies are spread more widely and, at later time points,
reach the frontal cortex. Thus, our proposed method yields insights into cognitive processing as well as corre-
sponding brain responses.

1. Introduction

Advances in electrophysiological, genetic, and neuroimaging
methods generate ever growing volumes of data. These massively
multivariate data sets require methods of analysis which go beyond
traditional statistical ANOVA-based approaches (Haynes and Rees, 2006;
O'Toole et al., 2007; Tong and Pratte, 2012). Particularly machine
learning methods have seen growing adoption in the life sciences because
they can be used to analyze high-dimensional data with great sensitivity

(Norman et al., 2006; Haxby et al., 2014). In neuroimaging, multivariate
pattern analysis (MVPA) has made it possible not only to investigate
differences in brain regional activity during the performance of a task,
but also to decode perceptual and mental representations as well as
conceptual and semantic information (Kamitani and Tong, 2005; Kay
et al., 2008; Mitchell et al., 2008; Schwarzlose et al., 2008; Rissman et al.,
2010; Simanova et al., 2014).

The complexity of multivariate analysis, however, leads to unex-
pected problems (Todd et al., 2013; Woolgar et al., 2014; Haynes, 2015;
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Jamalabadi et al., 2016). Here, we will explore the consequences of the
high sensitivity of MVPA for differences found between subgroups of
trials in cognitive experiments. In classical analyses, two conditions with
identical means are considered identical. Differences between trials
(caused by different stimuli, subjects, etc.) usually average out on the
dependent variable and therefore do not influence the group average.
The multivariate nature of MVPA, however, allows differences to accu-
mulate over dimensions (Fan and Fan, 2008; Jamalabadi et al., 2016).
Any differences between individual elements of the categories will be
used by MVPA to distinguish between categories, even if the categories
themselves have identical centroids. For example, if concept-related
features are the intended focus of study, different combinations of low-
level, stimulus-specific features like orientation, shape, color, etc. can
drive decoding although there is no overall average difference in these
features between both concepts (Haynes and Rees, 2006). In fact, MVPA
is sensitive to both the effect of interest and to any other confounding
factors that drive a difference between conditions (Todd et al., 2013;
Woolgar et al., 2014). Thus, if a data set consists of groups of trials that
differ in some stimulus-specific features, MVPA can detect differences
that might then be mistakenly attributed to the concept under investi-
gation. In other words, the classifier can use stimulus-specific rather than
category-specific features to decode data, effectively predicting stimuli
instead of conceptual categories. Therefore, the present paper explores a
method to determine the degree to which classification performance is
specific to higher order category processing and to lower order stimulus
processing.

Consider the following neuro-cognitive experiment, in which the
concepts of animate and inanimate objects are to be distinguished based
on electrical brain activity. 40 pictures each of six different types of an-
imals (e.g. cow, bear, dog, frog, …) and tools (e.g. knife, scissors,
hammer, saw, …) are presented to subjects, with the aim to decode the
two conceptual categories from event-related EEG. Since different types
of stimuli have features that distinguish them from the other types, the
classifier will detect brain responses to individual stimuli based on
combinations of their physical features alone (e.g. cows and frogs differ
in size, shape and color). As we will show below, these differences be-
tween stimulus types will contribute to classification even in the absence

of an actual effect of the superordinate concept. We will investigate the
relative contribution of these two components, i.e. how much of the
decoding performance originates from concept-related information and
how much is caused by stimulus differences.

In the following, we will consider the concept-related information as
the factor of interest (primary effect) and all the other contributing,
concept-irrelevant factors as the nuisance effects. By relabeling the data,
we can manipulate the relative contribution of concept (animate, inani-
mate) and stimulus (cow, frog, knife, scissors, …) to determine the
presence of the effect of interest when nuisance effects are controlled for.
The basic idea resembles that of a dose-response curve, in that we sys-
tematically vary the amount of concept-related information in the
training data set of the classifier to assess how classification performance
changes with varying levels of conceptual information. When the effect
of concept-related information is completely counterbalanced, decoding
performance originates solely from concept-irrelevant nuisance effects,
which constitutes our null hypothesis for statistical testing. We will apply
this method here in several examples, showing how to separate high-
level cognitive concepts from low-level stimulus processing. In partic-
ular, we will show how this method can be used to describe the detailed
time-course of cognitive concept processing. However, we believe that
the basic method can find application in many similar problems.

2. Method & results

Suppose that an experiment has the aim to decode conceptual infor-
mation (e.g. the semantic category) from brain activity. Different ex-
emplars of each category are presented to the subjects and the brain
response is recorded. For the sake of simplicity, and without loss of
generality, we assume that there are two semantic categories A and B.
Each category consists of stimuli coming from j ¼ 1; 2;…; k subclasses
(see Fig. 1A). For instance, in our example of animals and tools, there are
six subclasses per category (cow, bear, dog, frog,…for animals and knife,
scissors, hammer, saw, …for tools). We assume that each stimulus is
presented n times, resulting in k� n trials per category. We consider all of
the n trials that belong to the j th subclass as one block of data and denote
it with Aj or Bj. Therefore, each category consists of k blocks and can be

Fig. 1. Example of a concept-response curve. (A) Structure of data with two experimental conditions (A andB, e.g. animate and inanimate objects) and k blocks of data per condition. Each
block consists of all trials that belong to one subclass (e.g. frogs, cows, hammers, scissors, …). (B) By changing the number of blocks m in set S1 belonging to category A from 0 to k=2, we
can change the amount of concept-relevant information distinguishing between sets S1 and S2. Each point of the curve is derived from the classification of S1 versus S2. am and bm represent
m-block subsets of A and B, respectively. A\am denotes the set of blocks in A but not in am (similar for B\bm).
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