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Human brain dynamics can be viewed through the lens of statistical mechanics, where neurophysiological
activity evolves around and between local attractors representing mental states. Many physically-inspired
models of these dynamics define brain states based on instantaneous measurements of regional activity. Yet,
recent work in network neuroscience has provided evidence that the brain might also be well-characterized by
time-varying states composed of locally coherent activity or functional modules. We study this network-based
notion of brain state to understand how functional modules dynamically interact with one another to perform
cognitive functions. We estimate the functional relationships between regions of interest (ROIs) by fitting a pair-
wise maximum entropy model to each ROI's pattern of allegiance to functional modules. This process uses an
information theoretic notion of energy (as opposed to a metabolic one) to produce an energy landscape in which
local minima represent attractor states characterized by specific patterns of modular structure. The clustering of
local minima highlights three classes of ROIs with similar patterns of allegiance to community states. Visual,
attention, sensorimotor, and subcortical ROIs are well-characterized by a single functional community. The
remaining ROIs affiliate with a putative executive control community or a putative default mode and salience
community. We simulate the brain's dynamic transitions between these community states using a random walk
process. We observe that simulated transition probabilities between basins are statistically consistent with
empirically observed transitions in resting state fMRI data. These results offer a view of the brain as a dynamical
system that transitions between basins of attraction characterized by coherent activity in groups of brain
regions, and that the strength of these attractors depends on the ongoing cognitive computations.

Introduction

The human brain is a complex dynamical system comprised of
billions of neurons that continuously communicate with one another.
Although the vast number of processing units challenges exact predic-
tion of single neuron activity, recently developed statistical models
reveal a characteristic meso-scale structure whereby sets of larger-scale
brain regions display coherent activity at rest. These sets form putative
functional modules characterized by locally dense functional connec-
tivity, and include the default mode, salience, attention, fronto-parietal,
cingulo-opercular, motor, visual, auditory, and subcortical systems
(Salvador et al., 2005; Meunier et al., 2009; Yeo et al., 2011; Power

et al., 2011). Interestingly, although within-module functional con-
nectivity is in general higher than between-module functional con-
nectivity, these patterns fluctuate dynamically over short periods of
time (Ma et al., 2014; Kiviniemi et al., 2011; Watanabe et al., 2013),
both at rest and during task performance (Cole et al., 2014; Mattar
et al., 2015; Bassett et al., 2011, 2013b, 2015; Braun et al., 2015).
The existence of functional modules — as measured using graph
theory — was first reported nearly a decade ago (Salvador et al., 2005;
Meunier et al., 2009), and these initial reports were swiftly corrobo-
rated by studies using complementary methodologies ranging from co-
activation analysis to independent components analysis. A natural
question following the observation of these modules was “What do they
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do? And how are they recruited as we go through life performing a
variety of functions?” To address these questions, dynamic community
detection methods were developed and applied to neuroimaging data,
revealing the fact that modules reconfigure in support of working
memory (Braun et al., 2015, 2016), reinforcement learning (Gerraty
et al., 2016), visuo-motor learning (Bassett et al., 2011, 2013b, 2015),
and linguistic processing (Chai et al., 2017; Doron et al.,, 2012a).
Module reconfiguration at rest has also been reported as a marker of
aging and development (Betzel et al., 2015). These studies collectively
demonstrate that module reconfiguration is a hallmark of healthy brain
function (Telesford et al., 2016), and recent evidence suggests that it is
a marker that is altered in psychiatric disease, even providing an
intermediate phenotype of schizophrenia (Braun et al., 2016).

Despite the extensive work demonstrating the presence and cogni-
tive utility of dynamic module reconfiguration, fundamental insights
into the mechanisms or rules by which modules interact with one
another over time have remained elusive (Mattar et al., 2015;
Khambhati et al., 2016). Evidence suggests that module reconfigura-
tion may be driven by glutamatergic signaling (Braun et al., 2016),
affect and arousal Betzel et al. (2016a), and may provide a substrate for
cognitive control (Khambhati et al., 2016), supporting a delicate
balance between domain-general and domain-specific function
(Fedorenko and Thompson-Schill, 2014a). Although these observations
support the biophysical relevance of the phenotype, they do not provide
computational theories for its existence. Indeed, the development of a
theory explaining and predicting module dynamics would be particu-
larly important in informing studies of its cognitive specificity,
transmitter-level drivers, and role in psychiatric disease.

One potential route towards a mechanistic theory of brain network
dynamics is to consider probabilistic models that were originally
developed in the field of statistical mechanics. Pair-wise maximum
entropy models (MEM), for example, have proven very useful in
estimating and predicting spiking activity in neurons (Shlens et al.,
2006), local field potentials from neuronal assemblies (Tang et al.,
2008), and blood oxygen level dependent signals (BOLD) from brain
regions using functional magnetic resonance imaging (fMRI)
(Watanabe et al., 2013, 2014b, 2014c). When a pair-wise MEM
accurately fits empirical data, it implies that the observed activation
pattern can be described as a combination of each unit's independent
activation rate plus the units' joint activation rates. When a pair-wise
MEM does not accurately fit empirical data, it implies that higher order
interactions (such as triplets) or nonlinearities contribute to the
observed dynamics. Importantly, pair-wise MEMs can be used to infer
an energy landscape of brain activity during task performance. Here
the term energy is used in an information theoretic sense, and it does
not have a direct relation to metabolic energy or to a formal
Hamiltonian. The energy landscape is characterized by basins of
attraction representing common brain states, as well as the paths or
trajectories along which the brain moves as it transitions from one
basin to another. The architecture of this energy landscape has proven
useful in predicting individual differences in human perception and
behavior (Watanabe et al., 2014c).

In traditional applications of MEMs to neurophysiological data, a
brain state is defined as a pattern of activity across brain regions (or
similarly, a neural state is defined as a pattern of activity across
neurons). However, these notions of brain state are agnostic to the
patterns of communication or synchronization linking brain regions,
and therefore are unable to address the question of how one pattern of
coherent activity could evolve into another pattern of coherent activity.
To address this question, we explicitly define a network state as the
pattern of module allegiance across brain regions, and we use this
definition to examine transitions between network states. We test the
hypothesis that mesoscale structure in dynamic functional connectivity
patterns is well explained by pairwise interactions between commu-
nities. The null hypothesis that we seek to reject is that such patterns
cannot be explained without contributions from higher-order interac-
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tions between communities. To test this hypothesis, we construct a
time-dependent network by linking 10 regions of interest by the low
frequency (0.06—0.19 Hz) wavelet coherence between their time series
in a given time window. We use a community detection algorithm to
identify groups of brain regions that show stronger coherence with one
another than they do to other groups. We refer to these groups as
network communities, and we fit the MEM to each ROI's time series of
the state of co-occurrence in the same community with other ROIs.
This approach enables us to identify network states that form local
energy minima, as well as features of the energy landscape surrounding
these minima. More generally, this approach highlights the dynamic
functional roles that different ROIs play in network states and the
transitions between them.

Our results reveal the presence of local minima on the energy
landscape, many of which are characterized by the activation of a single
community. Interestingly, different ROIs show different patterns of
membership to these single community states. Visual, attention,
sensorimotor, and subcortical ROIs tend to form a single functional
community (Class-I). The remaining ROIs form the putative executive
control network (Class-II) and the putative default mode and salience
network (Class-III). To further study these dynamics, we modeled the
transitions of single community states over the landscape of the states's
energy via a random walk process. Our numerical simulations of basin
transitions using an MCMC random walk predict empirical frequencies
and probabilities of state transitions with high fidelity for Class-I and
Class-III ROIs, and with lower fidelity for executive control (Class-1I)
ROIs. In addition, empirically the executive control ROIs also display
higher entropy energy landscapes, linking diverse state classes, and
utilizing uniform transition probabilities across basins. These features
support the unique role of executive control regions in diversifying the
brain's dynamic functional repertoire across many cognitive processes
via their rich and flexible dynamic functional fingerprint.

Results
Distillation of drivers of resting state dynamics

Maximum entropy models are optimally constructed to fit patterns
of interactions between relatively few brain regions. We therefore
sought to distill the drivers of resting state dynamics to a few well-
chosen regions of interest. Specifically, in resting state fMRI data
acquired from 20 healthy adult individuals in a multiband imaging
sequence, we extract 10 regions of interest in a data-driven fashion as
centroids of independent components (see Methods). These regions
include the cuneus, precuneus, precentral gyrus, caudate, right and left
rostral middle frontal cortex, dorsomedial prefrontal cortex, medial
orbitofrontal cortex, and pars triangularis (see Table 1). We use these
regions as proxies of their respective cognitive systems, spanning
visual, dorsal attention, sensorimotor, basal ganglia, executive control,
dorsomedial prefrontal cortex, default mode, and salience systems,
respectively. For explicit maps of each independent component, and
the representative region chosen, see SI3.

Table 1
Regions of interest and their corresponding ICN.

ICN Lausanne ROI (scale 125)
1. Visual 189 Cuneus.1

2. Dorsal Attention (Attn) 184 Precuneus.1

3. Sensory/Motor (SM) 147 Precentral.3

4. Basal Gangla/Thalamus (BG) 228 Caudate

5. Left Executive Control Network (LECN) 128 Rostral middle frontal.2
6. Right Executive Control Network (RECN) 15 Rostral middle frontal.2
7. Rostral Middle Frontal Cortex (rmFC) 130 Rostral middle frontal.4
8. Dorsomedial Prefrontal Cortex (AMPFC) 135 Superior frontal.3

9. Default Mode Network (DMN) 122 Medial orbitofrontal.1

10. Salience 124 Pars triangularis.1
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