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A B S T R A C T

We present an information-theoretical analysis of temporal dependencies in EEG microstate sequences during
wakeful rest. We interpret microstate sequences as discrete stochastic processes where each state corresponds to a
representative scalp potential topography. Testing low-order Markovianity of these discrete sequences directly,
we find that none of the recordings fulfils the Markov property of order 0, 1 or 2. Further analyses show that the
microstate transition matrix is non-stationary over time in 80% (window size 10 s), 60% (window size 20 s) and
44% (window size 40 s) of the subjects, and that transition matrices are asymmetric in 14/20 (70%) subjects. To
assess temporal dependencies globally, the time-lagged mutual information function (autoinformation function)
of each sequence is compared to the first-order Markov model defined by the classical transition matrix approach.
The autoinformation function for the Markovian case is derived analytically and numerically. For experimental
data, we find non-Markovian behaviour in the range of the main EEG frequency bands where distinct periodicities
related to the subject's EEG frequency spectrum appear. In particular, the microstate clustering algorithm induces
frequency doubling with respect to the EEG power spectral density while the tail of the autoinformation function
asymptotically reaches the first-order Markov confidence interval for time lags above 1000 ms. In summary, our
results show that resting state microstate sequences are non-Markovian processes which inherit periodicities from
the underlying EEG dynamics. Our results interpolate between two diverging models of microstate dynamics,
memoryless Markov models on one side, and long-range correlated models on the other: microstate sequences
display more complex temporal dependencies than captured by the transition matrix approach in the range of the
main EEG frequency bands, but show finite memory content in the long run.

1. Introduction

The most prominent features of resting state surface EEG recordings
are ongoing, amplitude-modulated oscillations across the frequency
range of approximately 0:5� 70 Hz (Niedermeyer and da Silva, 2005).
EEG data is often analyzed with respect to this oscillatory activity. For
instance, we may be interested in the spectral power of a given frequency
band, phase relationships, or the dynamics of the oscillation's envelope,
to name but a few. The spatial distribution of the scalp potential varies
over time, showing episodes of stability alternating with short transition
episodes between certain quasi-stable EEG topographies (Wackermann
et al., 1993). Applying data compression techniques, stable topographies
can be clustered into sets of a few maps maximizing the global explained
variance (GEV) (Wackermann et al., 1993; Murray et al., 2008). These

maps are fitted competitively into the original EEG time series using a
maximum correlation criterion at each time step. The resulting micro-
state sequence at each time step contains the microstate label whose map
has the maximum absolute correlation with the EEG topography at that
time point. Alternative implementations have been proposed (Koenig
et al., 1999). Microstates denote quasi-stable episodes corresponding to a
single representative map, with an average duration in the range of
10–100 ms (Koenig et al., 2002; Brodbeck et al., 2012). Many studies
have shown a set of n ¼ 4 microstates to be optimal (Murray et al., 2008;
Brodbeck et al., 2012) although other cluster numbers have been
described in healthy resting state (Yuan et al., 2012) and pathological
conditions (Koenig et al., 1999; Kuhn et al., 2015). Here, we mostly use
n ¼ 4 microstates, however, all methods presented here can be used for
any number of states.
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The most common approach to microstate analysis is the transition
matrix approach. Using this straightforward approach, the transition
probabilities between microstate maps are estimated from the empirical
sequence of map labels and the resulting matrix is normalized row-wise
in order to yield a stochastic matrix. Subsequently, different experi-
mental conditions can be related to changing matrix entries (Koenig
et al., 2002; Brodbeck et al., 2012; Kuhn et al., 2015). On a conceptual
level, the transition matrix approach implies a (first-order) Markovian
model as the information flow over time is summarized by the condi-
tional probability of the future state xtþ1 ¼ Sj, given the current state
xt ¼ Si. Therefore, temporal dependencies more complex than first-
order Markov models cannot be captured by this approach. Moreover,
calculating a fixed transition matrix for a given data set cannot model
transition dynamics changing over time, i.e. non-stationarities. Unfor-
tunately, the Markov property is almost never tested for, an exception
being the microstate duration analysis published by (Wackermann et al.,
1993). Testing the geometric distribution of microstate durations for
short EEG time series up to a duration of 16 s, the Markov property
could not be rejected in 22/24 data sets (Wackermann et al., 1993). For
longer time series of at least several minutes, as usually recorded in
resting state experiments, we are not aware of any formal tests of low-
order Markov properties.

As an alternative analysis tool, Hurst exponent estimation has
recently been introduced for microstate sequences, with the aim to find
possible long-range dependencies (LRD) (Van de Ville et al., 2010;
Gschwind et al., 2015). In order to estimate the Hurst exponent, the n-
state symbolic sequence has to be mapped to a metric space f� 1; þ 1g
using a partition of the state space (Van de Ville et al., 2010). The
technique is inspired by LRD analyses of 4-state DNA sequences (Peng
et al., 1992). However, the following two questions remain unan-
swered so far: a) which is the correct state space partition, i.e. which
EEG topographies should be lumped into one group, and b) how can
the technique be applied to arbitrary cluster numbers? Moreover, the
resulting Hurst exponents are difficult to interpret as a Hurst exponent
of H > 0:5 does not automatically imply long-range dependencies,
especially in the case of non-stationary signals (McCauley et al., 2007;
Riley et al., 2012). We recently reported an excessive proportion of
false-positive LRD results when comparing experimental data with
short-range correlated Markov models (von Wegner et al., 2016).

The aim of the current study is to systematically analyze temporal
dependencies of microstate sequences and to characterize these se-
quences in the language of stochastic processes. Without making as-
sumptions on symbol distributions and their temporal dependencies,
we compute estimates of various information-theoretical quantities.
Using this approach, we avoid the need to partition the microstate set
and to project the sequences onto a metric space. All quantities used
can be computed for arbitrary state spaces, i.e. for any number of
microstates.

Our analysis starts on the shortest time scales, assessing low-order
Markov properties (order 0� 2) directly, based on well-established sta-
tistical tests (Kullback, 1959; Kullback et al., 1962). We perform an
additional first-order Markovianity test using a method presented in the
context of microstate research (Wackermann et al., 1993). Next, the
transition matrix is tested for time-stationarity, also termed conditional
homogeneity in (Kullback, 1959; Kullback et al., 1962), and for sym-
metry. Finally, global temporal dependencies up to time lags of 2000 ms
are analyzed using the time-lagged mutual information function (auto-
information function). Distinct periodicities found there are further
tested for robustness with respect to individual microstate maps and to
cluster numbers.

The information-theoretical approach presented here lets us conclude
that microstate properties show a behaviour somewhere between mem-
oryless Markov models and possibly long-range correlated random walk
models, adding the unique feature of reflecting the underlying EEG
periodicities.

2. Material & methods

2.1. Experimental data

A set of EEG recordings from 20 right-handed healthy subjects during
wakeful rest (age range: 19� 27, mean age: 23 yrs) was recorded in an
eyes-closed, wakeful rest condition. Selection criteria for the recordings
used were steady, prominent alpha oscillations in the parieto-occipital
EEG channels, and the absence of artefacts (eye blink, muscle, elec-
trode artefacts) or signs of drowsiness. The 30 channel EEG data sets were
acquired at a sampling rate of 5 kHz using the standard 10� 10 electrode
configuration. Data were band-pass filtered to 1� 40 Hz, down-sampled
to 250 Hz and re-referenced to an average reference. Power spectral
densities were computed with Welch's method using a segment length of
1024 samples, 50% overlap and a Hanning window. EEG recordings have
a total duration ranging from 100 to 312 s, corresponding to lengths of
25000-78000 samples. Written informed consent was obtained from all
subjects, and the study was approved by the ethics committee of the
Goethe University, Frankfurt, Germany.

2.2. Microstate analysis

EEG microstates were computed using the modified K-means algo-
rithm described in (Murray et al., 2008) and illustrated in Fig. 1. Fig. 1
shows a segment of resting-state EEG for a selection of channels as
indicated to the left. In the first step, the global field power time series
(GFP, blue line) is computed as the spatial standard deviation of the EEG
topography at each given time. At local GFP maxima (red dots), the
spatial configuration of the EEG is considered stable and explains most of
the variance of the time series (Wackermann et al., 1993). Therefore, K-
means clusters are initialized with EEG patterns drawn randomly from

Fig. 1. Microstate segmentation: the top panel shows a section of resting state EEG
(1–40 Hz, black lines) along with the resulting global field power (GFP, blue) and the local
GFP maxima (red dots). For better visibility, only the EEG channels indicated to the left are
shown. EEG topographies at local GFP maxima are clustered by the modified K-means
algorithm to obtain the (n ¼ 4) microstate maps labelled A-D (bottom panel).

F. von Wegner et al. NeuroImage 158 (2017) 99–111

100



Download English Version:

https://daneshyari.com/en/article/5630967

Download Persian Version:

https://daneshyari.com/article/5630967

Daneshyari.com

https://daneshyari.com/en/article/5630967
https://daneshyari.com/article/5630967
https://daneshyari.com

