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A B S T R A C T

Due to the dynamic, condition-dependent nature of brain activity, interest in estimating rapid functional connectivity (FC) changes that occur during resting-state
functional magnetic resonance imaging (rs-fMRI) has recently soared. However, studying dynamic FC is methodologically challenging, due to the low signal-to-
noise ratio of the blood oxygen level dependent (BOLD) signal in fMRI and the massive number of data points generated during the analysis. Thus, it is important
to establish methods and summary measures that maximize reliability and the utility of dynamic FC to provide insight into brain function. In this study, we inves-
tigated the reliability of dynamic FC summary measures derived using three commonly used estimation methods - sliding window (SW), tapered sliding window
(TSW), and dynamic conditional correlations (DCC) methods. We applied each of these techniques to two publicly available rs-fMRI test-retest data sets - the Multi-
Modal MRI Reproducibility Resource (Kirby Data) and the Human Connectome Project (HCP Data). The reliability of two categories of dynamic FC summary measures
were assessed, specifically basic summary statistics of the dynamic correlations and summary measures derived from recurring whole-brain patterns of FC (“brain
states”). The results provide evidence that dynamic correlations are reliably detected in both test-retest data sets, and the DCC method outperforms SW methods in
terms of the reliability of summary statistics. However, across all estimation methods, reliability of the brain state-derived measures was low. Notably, the results also
show that the DCC-derived dynamic correlation variances are significantly more reliable than those derived using the non-parametric estimation methods. This is
important, as the fluctuations of dynamic FC (i.e., its variance) has a strong potential to provide summary measures that can be used to find meaningful individual
differences in dynamic FC. We therefore conclude that utilizing the variance of the dynamic connectivity is an important component in any dynamic FC-derived
summary measure.

1. Introduction

The functional organization of the brain has a rich spatio-temporal
structure that can be probed using functional connectivity (FC) mea-
sures. Defined as the undirected association between functional magnetic
resonance imaging (fMRI) time series from two or more brain regions, FC
has been shown to change with age (Betzel et al., 2014; Gu et al., 2015),
training (Bassett et al., 2015, 2011), levels of consciousness (Hudson
et al., 2014), and across various stages of sleep (Tagliazucchi and Laufs,
2014). Traditionally, FC has been assumed to be constant across a given
experimental run. However, recent studies have begun to probe the
temporal dynamics of FC on shorter timescales (i.e., seconds instead of
entire runs lasting many minutes) (Hutchison et al., 2013a; Preti et al.,

2016). Such rapid alterations in FC are thought to allow the brain to
continuously sample various configurations of its functional repertoire
(Sadaghiani et al., 2015; Preti et al., 2016). These studies of dynamic FC
have also enabled the classification of whole-brain dynamic FC profiles
into distinct “brain states”, defined as recurring whole-brain connectivity
profiles that are reliably observed across subjects throughout the course
of a resting state run (Calhoun et al., 2014). A common approach to
determining the presence of such coherent brain states across subjects is
to perform k-means clustering on the correlation matrices across time.
Brain states can then be summarized as the patterns of connectivity at
each centroid, and additional summary metrics such as the amount of
time each subject spends in a given state can be computed. Using this
definition of brain state, it has been shown that the patterns of
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connectivity describing each state are reliably observed across groups
and individuals (Yang et al., 2014), while other characteristics such as
the amount of time spent in specific states and the number of transitions
between states vary with meaningful individual differences such as age
(Hutchison and Morton, 2015; Marusak et al., 2017) or disease status
(Damaraju et al., 2014; Rashid et al., 2014). However, this approach
towards understanding what has recently been termed the “chron-
nectome” is still in its infancy (Calhoun et al., 2014).

A number of methodological issues have limited the interpretability
of existing studies using dynamic connectivity. For instance, detecting
reliable and neurally-relevant dynamics in FC is challenging when there
are no external stimuli to model. Dynamic FC research generally relies
upon the use of resting state fMRI (rs-fMRI) data and therefore, it is
unclear whether the states that are identified accurately reflect under-
lying cognitive states. Another issue is that dynamic FC methods sub-
stantially increase the number of data points to consider initially (e.g., a
T � d (time-by-region) input matrix becomes a d� d� T array). This is in
contrast to statistical methods that reduce the dimensionality of the data.
Also, the signal-to-noise ratio of the blood oxygen level dependent
(BOLD) signal in rs-fMRI is low, and it is often unclear whether observed
fluctuations in the temporal correlation between brain regions should be
attributed to dynamic neural activity, non-neural biological signals (such
as respiration or cardiac pulsation), or noise (Handwerker et al., 2012;
Hlinka and Hadrava, 2015). Due to these methodological challenges,
metrics of dynamic FC are sensitive to the method used to estimate them
(Lindquist et al., 2014; Hlinka and Hadrava, 2015; Leonardi and Van De
Ville, 2015), and uncertainty remains regarding the appropriate esti-
mation method to use. An important concern moving forward is to
establish methods that maximize the reliability of dynamic FC metrics,
which in turn will enhance our ability to use individual variability in
dynamic FC metrics to understand individual variability in behavior and
cognitive function.

The most widely used method for detecting dynamic FC is the sliding
window (SW) method, in which correlation matrices are computed over
fixed-length, windowed segments of the fMRI time series. These time
segments can be derived from individual voxels (Handwerker et al.,
2012; Hutchison et al., 2013b; Leonardi and Van De Ville, 2015), aver-
aged over pre-specified regions of interest (Chang and Glover, 2010), or
estimated using data-driven methods such as independent component
analysis (Allen et al., 2012a; Yaesoubi et al., 2015). Observations within
the fixed-length window can be given equal weight as in the conventional
SW method, or allowed to gradually enter and exit the window as it is
shifted across time, a strategy that is used by the tapered sliding window
(TSW) method (Allen et al., 2012a). Potential pitfalls of the family of SW
methods include the use of arbitrarily chosen fixed-length windows,
disregard of values outside of the windows, and an inability to handle
abrupt changes in connectivity patterns.

Model-based multivariate volatility methods attempt to address these
shortcomings through flexible modeling of dynamic correlations and
variances. Widely used to forecast time-varying conditional correlations
in financial time series, model-based multivariate volatility methods
have consistently been shown to outperform SW methods (Hansen and
Lunde, 2005). The dynamic conditional correlations (DCC) method is an
example of a model-based multivariate volatility method that has
recently been introduced to the neuroimaging field (Lindquist et al.,
2014). Considered as one of the best multivariate generalized auto-
regressive conditional heteroscedastic (GARCH) models (Engle, 2002),
the DCC method effectively estimates all model parameters through
quasi-maximum likelihood methods. Additionally, the asymptotic theory
of the DCC model provides a mechanism for statistical inference that is
not readily available when using other techniques for estimating dy-
namic correlations, though such mechanisms are currently under devel-
opment (Kudela et al., 2017). In a previous study, simulations and
analyses of experimental rs-fMRI data suggested that the DCC method
achieved the best overall balance between sensitivity and specificity in
detecting temporal changes in FC (Lindquist et al., 2014). Specifically, it

was shown that the DCC method was less susceptible to noise-induced
temporal variability in correlations compared to the SW method and
other multivariate volatility methods.

The goal of this study was to identify estimation methods that provide
accurate and reliable measures of various dynamic FC metrics. In
particular, we compared the reliability of summary measures estimated
using a family of SW methods (that represent the most commonly used
dynamic FC estimation methods) and those estimated using the DCC
method (that represents a more advanced model-based multivariate
volatility method). We assessed the reliability of two types of dynamic FC
summary measures: 1) basic summary statistics, specifically the mean
and variance of dynamic FC across time, and 2) statistics derived from
brain states, specifically the dwell time and number of change points
between states. We compared the reliability of these methods using two
publicly available rs-fMRI test-retest data sets: 1) the Multi-Modal MRI
Reproducibility Resource (Kirby) data set (Landman et al., 2011), which
used a well-established echo planar imaging (EPI) sequence with a
repetition time (TR) of 2000 ms, and 2) the Human Connectome Project
500 Subjects Data Release (HCP) data set (Van Essen et al., 2013), which
used a simultaneous multi-slice EPI sequence with a TR of 720 ms. These
two data sets differ in terms of the acquisition parameters used and in the
preprocessing steps performed to clean the data, with acquisition and
processing parameters for the former representing well-established pro-
cedures used by many rs-fMRI researchers, and those for the latter rep-
resenting cutting-edge procedures designed to optimize data quality. We
hypothesized that the DCC-estimated dynamic FC summary measures
would be more reliable than those estimated using the conventional SW
and TSW methods, and that dynamic FC summary measures obtained
using the HCP data would be more reliable than those obtained using the
Kirby data.

2. Methods

2.1. Image acquisition

2.1.1. Kirby data
We used the Multi-Modal MRI Reproducibility Resource (Kirby) from

the F.M. Kirby Research Center to evaluate the reliability of dynamic FC
summary measures obtained using a typical-length, standard EPI
sequence, which were cleaned using established preprocessing proced-
ures. This resource is publicly available at http://www.nitrc.org/
projects/multimodal. Please see Landman et al. (2011) for a detailed
explanation of the entire acquisition protocol. Briefly, this resource in-
cludes data from 21 healthy adult participants who were scanned on a 3T
Philips Achieva scanner. The scanner is designed to achieve 80 mT/m
maximum gradient strength with body coil excitation and an eight
channel phased array SENSitivity Encoding (SENSE) (Pruessmann et al.,
1999) head-coil for reception. Participants completed two scanning ses-
sions on the same day, between which participants briefly exited the scan
room and a full repositioning of the participant, coils, blankets, and pads
occurred prior to the second session. A T1-weighted (T1w)
Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE)
structural run was acquired during both sessions (acquisition
time ¼ 6 min, TR/TE/TI ¼ 6.7/3.1/842 ms,
resolution ¼ 1 � 1 � 1.2 mm3, SENSE factor ¼ 2, flip angle ¼ 8�). A
multi-slice SENSE-EPI pulse sequence (Stehling et al., 1991; Pruessmann
et al., 1999) was used to acquire one rs-fMRI run during each session,
where each run consisted of 210 vol sampled every 2 s at 3-mm isotropic
spatial resolution (acquisition time: 7 min, TE ¼ 30 ms, SENSE acceler-
ation factor ¼ 2, flip angle ¼ 75�, 37 axial slices collected sequentially
with a 1-mm gap). Participants were instructed to rest comfortably while
remaining as still as possible, and no other instruction was provided. We
will refer to the first rs-fMRI run collected as session 1 and the second as
session 2. One participant was excluded from data analyses due to
excessive motion.
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