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A B S T R A C T

Population-level inferences and individual-level analyses are two important aspects in functional magnetic
resonance imaging (fMRI) studies. Extracting reliable and informative features from fMRI data that capture
biologically meaningful inter-subject variation is critical for aligning and comparing functional networks across
subjects, and connecting the properties of functional brain organization with variations in behavior, cognition and
genetics. In this study, we derive two new measures, which we term functional density map and edge map, and
demonstrate their usefulness in characterizing the function of individual brains. Specifically, using data from the
Human Connectome Project (HCP), we show that (1) both functional maps capture intrinsic properties of the
functional connectivity pattern in individuals while exhibiting large variation across subjects; (2) functional maps
derived from either resting-state or task-evoked fMRI can be used to accurately identify subjects from a popu-
lation; and (3) cross-subject alignment using these functional maps considerably reduces functional variation and
improves functional correspondence across subjects over state-of-the-art multimodal registration algorithms. Our
results suggest that the proposed functional density and edge maps are promising features in characterizing the
functional architecture in individuals and provide an alternative way to explore the functional variation across
subjects.

1. Introduction

A substantial degree of anatomical and functional variability in the
human brain has been observed across individuals (Mueller et al., 2013;
Laumann et al., 2015), which has a strong link with differences in
behavioral performance (Stephen, 2016). Morphological measurements
such as cortical thickness, sulcal depth and curvature can be computed
from structural magnetic resonance imaging (MRI) scans and have been
widely used to explore individual anatomical variability on the cortex
(Fischl and Dale, 2000; Im et al., 2008). Functional variability in in-
dividuals can be captured by functional MRI (fMRI) in either task or
resting conditions. Recently, functional connectivity derived from fMRI
data has been utilized to investigate individual functional variability
(Mueller et al., 2013). Individual differences in functional connectivity
have been demonstrated to be heterogeneous across the cortex in Mueller
et al. (2013). Significantly higher variability has been shown in hetero-
modal association cortex while lower variability was found in unimodal
cortices. However, the entire functional connectome is noisy, sensitive to

local perturbations (Jiang et al., 2013), and difficult to visualize due to its
high dimensional nature. Independent Component Analysis (ICA) is often
employed to reduce the spatial dimension of fMRI data (Smith et al.,
2013) but may fail to localize individual components. Low-dimensional
functional measurements that can characterize functional connectivity
profiles while preserving their spatial localization may provide a better
way to compare and visualize functional differences at the individ-
ual level.

In contrast to individual-level analysis, group-level fMRI features
obtained by averaging data across subjects have been more extensively
investigated since the early 1990s. Group-level analysis often benefits
from improved signal-to-noise ratio (SNR) but is hampered by substantial
anatomical and functional variability across subjects. To enable a reliable
group-level analysis, anatomical and functional correspondence need to
be established among subjects before calculating the group average for
subsequent analysis. Although anatomical variability can be largely
removed through an alignment of morphological features (Liu et al.,
2004; Gholipour et al., 2007; Fischl et al., 2008; Conroy et al., 2013),
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substantial functional variability often remains after structure-based
cross-subject registration. Recent studies (Sabuncu et al., 2010; Conroy
et al., 2013; Robinson et al., 2014) have attempted to remove functional
variability by using fMRI-derived features in the registration, thus
improving the power of analysis at the group level (Glasser et al., 2016).

In this work, we address two fundamental problems in the analysis of
functional neuroimaging data. First, state-of-the-art fMRI studies utilize
high-dimensional functional connectivity profiles (Yeo et al., 2011) or
ICA-based fMRI features (Smith et al., 2013; Glasser et al., 2016). How-
ever, these measurements may not well characterize the unique func-
tional architecture of an individual brain. Second, group analysis is
complicated by the large cross-subject variability of structure-function
relationship, which reduces the power to detect group effects in func-
tional studies. To address these issues, here we derive a functional den-
sity map and an edge map from fMRI data to characterize the functional
connectivity pattern in individuals, and use these maps to establish
functional correspondence across subjects for group analysis. The func-
tional density map quantifies and summarizes functional connectivity
strength at each location on the cortex. A cortical location will have a
large density value if it is strongly connected to a large number of other
locations. The functional edge map derived from the functional density
maps was inspired by the work of Gordon et al. (2014). It models the
transitions in functional connectivity patterns and corresponds to func-
tional boundaries. Large values in an edge map indicate sharp change of
functional connectivity patterns. Using data from 100 unrelated subjects
distributed by the Human Connectome Project (HCP) WU-UMinn Cor-
sortium (Van Essen et al., 2013), we demonstrate that:

1. The functional density and edge maps are unique at the individual
level and capture functional variation across subjects, and thus can
serve as functional fingerprints to identify subjects from a large
population;

2. Individual functional density and edge maps can be used to establish
functional correspondence across subjects and produce sharp group
averages. The group-average functional density and edge maps are
highly reproducible across independent samples;

3. Cross-subject alignment using functional maps derived from resting-
state fMRI improves the alignment of task activations across sub-
jects. These functional maps can be used as promising measures for
driving the functional alignment in order to remove inter-subject
functional variations and to establish functional correspondence
across subjects for group analysis.

These results suggest that the proposed functional density and edge
maps capture intrinsic properties of subject-specific functional connec-
tivity patterns, and have the potential to characterize functional variation
in the population, improve function-based cross-subject alignment and
increase the power of group-level inferences.

2. Materials and methods

2.1. Data

A data set of 100 unrelated young and healthy subjects was down-
loaded from the HCP WU-Minn Consortium (Van Essen et al., 2013).
Multimodal MR images, including T1-weighted and T2-weighted imag-
ing, fMRI and diffusion-weighted imaging were collected from all sub-
jects on a customized Siemens 3T Connectome Skyra scanner using HCP's
acquisition protocol (Van Essen et al., 2012). Structural images were
acquired using a 3D MPRAGE T1-weighted sequence with 0.7 mm
isotropic resolution. Other parameter settings included: TR ¼ 2400 ms;
TE ¼ 2.14 ms; TI ¼ 1000 ms; flip angle¼ 8�. Two resting-state and seven
task fMRI sessions were collected for each subject. The tasks included
working memory (WM), gambling, motor, language, social cognition,
relational processing and emotional processing. In each session, two runs
were acquired using single-shot EPI with alternating (left-to-right, LR and

right-to-left, RL) phase encoding directions. The two resting sessions
were acquired on separate days with the following scanning parameters:
TR ¼ 720 ms; TE ¼ 33.1 ms; flip angle ¼ 52�; slice thickness ¼ 2.0 mm;
72 slices; 2 mm isotropic voxels; multiband factor ¼ 8; matrix
size ¼ 104� 90; partial Fourier ¼ 6/8; echo spacing ¼ 0.58 ms; band-
width (BW) ¼ 2290 Hz/px; time points ¼ 1200. The acquisition protocol
of the task sessions was identical to that of the resting sessions to achieve
maximal compatibility between task and resting data. Full details about
subject recruitment and MRI data acquisition can be found in (Smith
et al., 2013; Barch et al., 2013).

2.2. Preprocessing

The HCP minimal preprocessing pipeline (Glasser et al., 2013) was
utilized to process the data set, which included artifact removal, motion
correction and alignment to standard space using cortical folding fea-
tures. Software used by this pipeline included FSL (FMRIB's Software
Library) (Jenkinson et al., 2012), FreeSurfer (Fischl, 2012), and the
Connectome Workbench (Marcus et al., 2013). Specifically, the pro-
cessing of structural MRI comprised the PreFreeSurfer (Jovicich et al.,
2006; van der Kouwe et al., 2008), FreeSurfer recon-all (Dale et al., 1999;
Fischl et al., 1999a, b, 2001; 2002; S�egonne et al., 2007) and Post-
FreeSurfer steps (Glasser et al., 2014), and the cortical and subcortical
fMRI signals were processed separately in fMRISurface (Glasser et al.,
2013) and fMRIVolume (Andersson et al., 2003; Greve and Fischl, 2009)
pipelines. fMRI data were resampled onto a standard “grayordinate”
space, which used a surface representation with 32,492 vertices on each
hemisphere. The fMRI time series were then temporally demeaned and
linearly detrended within each run, followed by a bandpass filtering
(0.01–0.08 Hz). Next, the whole-brain signal was regressed out and
surface-based smoothing using a Gaussian kernel with 6 mm full-width at
half-maximum (FWHM) was applied. Finally, two runs within each
resting-state or task session were concatenated.

2.3. Calculation of functional density and edge maps

Given a cortical mesh Pwith N vertices, in order to calculate a density
value for each vertex, we first constructed a weighted graph by con-
necting all neighboring vertices of the mesh and computing the Pearson
distance between each pair of neighboring vertices i and j:

dij ¼ 1� 〈yi; yj〉 (1)

where yi and yj are the normalized fMRI time series and 〈⋅; ⋅〉 denotes the
standard inner product. The shortest path between each pair of vertices
through the weighted graph was then computed and defined as their
geodesic distance (Honnorat et al., 2015). The geodesic distance between
two vertices reflects the dissimilarity of their time series through the
surface. However, it should be mentioned that the geodesic distance is
also affected by the spatial distance since it is the accumulated sum along
the shortest path. Tow vertices with a long spatial distance are more
likely to have a large geodesic distance. The density value at vertex i can
then be computed using a Gaussian kernel (Rodriguez and Laio, 2014):

ρi ¼
XN

k¼1;k≠i

a exp

 
�
�
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�2
d2c

!
(2)

where dik is the geodesic distance between vertex i and vertex k, N is the
total number of vertices, and dc is a free parameter. The parameter a was
set to 1 and the parameter bwas set to zero as suggested in Rodriguez and
Laio (2014). It can be seen that a vertex which is functionally similar to
other vertices (i.e., has short geodesic distances to other vertices) tends to
have a larger density value. In the present study, for each subject, the
parameter dc was set to the top 0:1% smallest geodesic distance for each
subject since we found that with this parameter setting the functional
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