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a b s t r a c t

Phase-locked loops (PLLs) are widely used in applications related to control systems and

telecommunication networks. Here we show that a single-chain master–slave network

of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the

value of a single parameter is varied. Hopf, period-doubling and saddle–saddle

bifurcations are found. Chaos appears in dissipative and non-dissipative conditions.

Thus, chaotic behaviors with distinct dynamical features can be generated. A way of

encoding binary messages using such a chaos-based communication system is

suggested.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Phase-locked loop (PLL) is an electronic device de-
signed to extract time signals from transmission channels.
This device has been extensively employed in applications
requiring automatic control of frequency with the aim of
obtaining synchronism, such as in computers, modems,
motors, radars, radio and television receivers, telecommu-
nication networks, etc. (e.g. [1,2]). It is a closed loop
composed by three elements: a phase detector (PD), a
low-pass filter (LPF) and a voltage controlled oscillator
(VCO), as illustrated in Fig. 1.

Consider a single-chain master–slave telecommunica-
tion network, where each node sends signals to a unique
neighboring node. Let yiðjÞðtÞ be the phase of the input
signal and yoðjÞðtÞ the phase of the output signal of the j-th
PLL. The role of j-th PLL is to synchronize the signal voðjÞðtÞ

generated by its own VCO with the signal viðjÞ ¼ voðj�1ÞðtÞ

provided by VCO of the ðj� 1Þ-th PLL (j ¼ 1;2; . . .).
Assume that:

voðjÞðtÞ ¼ VoðjÞ cos o0t þ yoðjÞðtÞ þ ðj� 1Þ
p
2

h i
(1)

for j ¼ 0;1;2; . . . : Thus, the output signal of every VCO has
periodic form with central frequency o0 and amplitude
VoðjÞ40. The index j ¼ 0 labels the master clock.

The adjustable phase of the output signal of j-th PLL is
yoðjÞðtÞ and it depends on the time-varying phase yiðjÞðtÞ

of the input signal. A synchronous solution corresponds
to the phase errors defined by fjðtÞ � yiðjÞðtÞ � yoðjÞðtÞ ¼

yoðj�1ÞðtÞ � yoðjÞðtÞ (j ¼ 1;2; . . .) assuming constant values or,
equivalently, the frequency errors dfjðtÞ=dt � wjðtÞ ¼

dyiðjÞðtÞ=dt � dyoðjÞðtÞ=dt ¼ dyoðj�1ÞðtÞ=dt � dyoðjÞðtÞ=dt van-
ishing (e.g. [3–6]).

We consider that the input–output relation concerning
the LPF of the j-th PLL is described by the second-order
differential equation:

d2vcðjÞðtÞ

dt2
þ kj

dvcðjÞðtÞ

dt
þ vcðjÞðtÞ ¼

dvdðjÞðtÞ

dt
þ vdðjÞðtÞ (2)
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where vdðjÞðtÞ is the input and vcðjÞðtÞ is the output of the
LPF, and kjX0. PLLs with similar filters were already
studied (e.g. [4,7,8]).

Here all PLLs use signal multiplier as PD; therefore, the
PD output vdðjÞðtÞ is given by:

vdðjÞðtÞ ¼ kdðjÞviðjÞðtÞvoðjÞðtÞ ¼ kdðjÞvoðj�1ÞðtÞvoðjÞðtÞ (3)

where kdðjÞ40 is the PD gain of the j-th PLL.
The VCO output phase yoðjÞðtÞ is controlled by the signal

vcðjÞðtÞ according to:

dyoðjÞðtÞ

dt
¼ kvðjÞvcðjÞðtÞ (4)

where kvðjÞ40 is the VCO gain of the j-th PLL.
It is a common approximation to consider that the

second-harmonic appearing in vdðjÞðtÞ will be cut out by
the filter (for a discussion, see [3,5]). Thus, the expression
for vdðjÞðtÞ can be reduced to:

vdðjÞðtÞ ’
kdðjÞVoðjÞVoðj�1Þ

2
sinfjðtÞ (5)

By combining the expressions (1)–(5), the dynamics of
the j-th PLL is described by the following nonlinear
ordinary differential equation:

d3fjðtÞ

dt3
þ kj

d2fjðtÞ

dt2
þ ð1þ mj cosfjðtÞÞ

dfj

dt
þ mj sinfjðtÞ

¼
d3yiðjÞðtÞ

dt3
þ kj

d2yiðjÞðtÞ

dt2
þ

dyiðjÞðtÞ

dt
� gjðtÞ (6)

where mj � ðVoðjÞVoðj�1ÞkdðjÞkvðjÞÞ=240 is called PLL gain.
Since 1980s chaotic circuits (e.g. [9,10]) have been

theoretically analyzed and physically built in order to be
used in applications involving cryptography (e.g. [11,12]),
image processing (e.g. [13]), modulation (e.g. [11,12]),
network synchronization (e.g. [14]), pseudo-random
number generation (e.g. [11,12]), etc. Here we analytically
and numerically investigate the asymptotical solutions of
the network described by Eq. (6) and propose a way of
encoding binary messages using the chaotic behaviors
appearing in such a network. Analyses for first-order
(e.g. [15–17]), second-order (e.g. [18,19]), and different
third-order PLL networks (e.g. [4,6,8,20]) can be found in
the literature.

2. Analysis

Firstly, consider the case where there are two nodes;
that is, only one slave (j ¼ 1) linked to the master clock
(j ¼ 0). Assume that the master phase yoð0ÞðtÞ presents a
linear variation with the time, that is: yoð0ÞðtÞ ¼ Ot þ c,
with OX0 and c ¼ constant. Observe that when yoð0ÞðtÞ �

yið1ÞðtÞ varies as a ramp input (Oa0), then g1ðtÞ ¼ O
becomes a step input.

The third-order differential Eq. (6) for f1ðtÞ � yoð0ÞðtÞ �

yoð1ÞðtÞ can be rewritten as the following three first-order
differential equations:

df1ðtÞ

dt
� w1ðtÞ � f 1ðf1;w1; a1Þ

dw1ðtÞ

dt
� a1ðtÞ � f 2ðf1;w1; a1Þ

da1ðtÞ

dt
¼ � k1a1ðtÞ � ð1þ m1 cosf1ðtÞÞw1ðtÞ � m1 sinf1ðtÞ

þO � f 3ðf1;w1; a1Þ (7)

Notice that ~r:~f ðf1;w1; a1Þ ¼ �k1, where ~f ¼ ðf 1; f 2; f 3Þ.
Thus, the divergent of the vector field ~f related to the
system (7) is negative for k140, implying that the system
is dissipative (which means that volumes in the state
space f1 �w1 � a1 contract along the flow). For k1 ¼ 0
such a divergent is null; hence, this system is conservative
(which means that volumes in the state space are
preserved).

In the PLL jargon, the capture range is defined as the
set of values of the velocity O such that the closed loop is
able of reaching a synchronous state. This state corre-
sponds to a stationary solution with f1ðtÞ ¼ f�1 ¼
constant, w1ðtÞ ¼ w�1 ¼ 0, a1ðtÞ ¼ a�1 ¼ 0 and is represented
by the equilibrium point ðf�1;0;0Þ in the state space.

The nonlinear system (7) presents two equilibrium
points: a point with f�1a ¼ arcsinðO=m1Þ (0pf�1app=2)
and another point with f�1b ¼ p� arcsinðO=m1Þ (p=2p
f�1bpp). These points exist only if 0pO=m1p1. When
O=m141, there is not synchronism.

The local stability of ðf�1a;0;0Þ and ðf�1b;0;0Þ is
determined from the eigenvalues l1;2;3 of the Jacobian
matrix related to the system (7) linearized around each
point. Hartman–Grobman Theorem states that an equili-
brium point is locally asymptotically stable when all
eigenvalues have negative real parts (e.g. [21]). For the
system (7), the eigenvalues l1;2;3 are the roots of the
characteristic equation:

l3
þ a1l

2
þ a2lþ a3 ¼ 0 (8)

where a1 ¼ k1, a2 ¼ 1þ m1 cosf�1 and a3 ¼ m1 cosf�1.
According to Routh–Hurwitz Criterion (e.g. [22]), all
eigenvalues have negative real parts if a140, a240,
a340 and a1a24a3. Here, this last condition corres-
ponds to:

k14kc1 �
m1 cosf�1

1þ m1 cosf�1
(9)

Therefore, for k1 ¼ 0, both equilibrium points are un-
stable and there is a subcritical saddle–saddle bifurcation
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Fig. 1. Block diagram of a PLL. The PLL input signal is represented by viðtÞ,

the VCO output signal by voðtÞ, the PD output signal by vdðtÞ and the LPF

output signal by vcðtÞ.
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