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A B S T R A C T

Despite numerous important contributions, the investigation of brain connectivity with magnetoencephalo-
graphy (MEG) still faces multiple challenges. One critical aspect of source-level connectivity, largely overlooked
in the literature, is the putative effect of the choice of the inverse method on the subsequent cortico-cortical
coupling analysis. We set out to investigate the impact of three inverse methods on source coherence detection
using simulated MEG data. To this end, thousands of randomly located pairs of sources were created. Several
parameters were manipulated, including inter- and intra-source correlation strength, source size and spatial
configuration. The simulated pairs of sources were then used to generate sensor-level MEG measurements at
varying signal-to-noise ratios (SNR). Next, the source level power and coherence maps were calculated using
three methods (a) L2-Minimum-Norm Estimate (MNE), (b) Linearly Constrained Minimum Variance (LCMV)
beamforming, and (c) Dynamic Imaging of Coherent Sources (DICS) beamforming. The performances of the
methods were evaluated using Receiver Operating Characteristic (ROC) curves. The results indicate that
beamformers perform better than MNE for coherence reconstructions if the interacting cortical sources consist
of point-like sources. On the other hand, MNE provides better connectivity estimation than beamformers, if the
interacting sources are simulated as extended cortical patches, where each patch consists of dipoles with
identical time series (high intra-patch coherence). However, the performance of the beamformers for interacting
patches improves substantially if each patch of active cortex is simulated with only partly coherent time series
(partial intra-patch coherence). These results demonstrate that the choice of the inverse method impacts the
results of MEG source-space coherence analysis, and that the optimal choice of the inverse solution depends on
the spatial and synchronization profile of the interacting cortical sources. The insights revealed here can guide
method selection and help improve data interpretation regarding MEG connectivity estimation.
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Introduction

Interactions between neural assemblies in different brain structures
are a hallmark of healthy brain function (Mesulam, 1990; Varela et al.,
2001; Luo et al., 2010; Mišić and Sporns, 2016). The ability to reliably
measure the dynamics of cerebral networks is therefore of utmost
importance when it comes to elucidating the neural basis of large-scale
integration in health and monitoring its breakdown in disease
(Schnitzler and Gross, 2005; Lopes da Silva, 2013; Pittau and
Vulliemoz, 2015; Alamian et al., 2017). Given the diversity of available
neuroimaging and brain recording techniques, numerous functional
brain connectivity measures have been used (e.g. Schoffelen and Gross,
2009; Friston et al., 2013; Engel et al., 2013; O’Neill et al., 2015). One
technique that is particularly well suited for the detection of large-scale
interactions among neural assemblies is magnetoencephalography
(MEG) (Hämäläinen et al., 1993; Dalal et al., 2009; Baillet et al.,
2001; Gross et al., 2013; O’Neill et al., 2015). The millisecond-range
temporal resolution of MEG allows us to probe the electrophysiological
mechanisms that underlie functional brain connectivity (Schölvinck
et al., 2013), and its role in sensory, motor and higher-order cognitive
tasks (Lopes da Silva, 2013; Jerbi et al., 2007; Gross et al., 2003;
Schnitzler and Gross, 2005; Meeren et al., 2013; Simanova et al., 2015)
as well as in the resting-state (Cabral et al., 2014; de Pasquale et al.,
2012; Hipp et al., 2012; Schölvinck et al., 2013; O’Neill et al., 2015;
Henson et al., 2007; van Diessen et al., 2015; Garcés et al., 2016;
Colclough et al., 2016).

Although sensor-level analyses of MEG recordings have provided
important insights into brain function, the estimation of neuronal
interactions at the source level is key to elucidating the role of large-
scale brain networks in health and disease. To achieve this goal, one
needs, first of all, to reconstruct the source time series that underlie the
sensor-level measurements.

This is an ill-posed inverse problem since there is no unique
solution (an infinite number of current density distributions result in
zero magnetic field outside the head) and furthermore there is no
continuous dependency of the solution from the data (i.e. small
variations in source space can lead to large perturbations in data
space). Given that the Maxwell equations are linear, it is impossible to
choose between an infinite number of equally good solutions, without
prior knowledge, additional constraints or both. Numerous methods
have been proposed to tackle this inverse problem (Baillet et al., 2001;
Küçükaltun-Yildirim et al., 2006; Gross et al., 2013). The specificity of
each technique depends on the assumption that is made about the
properties of the neural sources and on the way it incorporates various
forms of a priori information, if any is available. One of the earliest and
most widely used inverse methods is the Minimum Norm Estimate
(MNE) (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1984,
1994; Sarvas, 1987; Matsuura and Okabe, 1995; Wang et al., 1993;
Baillet et al., 2001; Hauk, 2004; David et al., 2002; Attal and Schwartz,
2013; Lin et al., 2006; Liu et al., 1998; Grave de Peralta Menendez
et al., 1997; Hsiao et al., 2015; Cheng et al., 2015; Stenroos and Hauk,
2013; Meeren et al., 2013; Palva et al., 2010; Mattout et al., 2005;
Chang et al., 2015; Simanova et al., 2015; Kanamori et al., 2013). In
principle, MNE searches for a source distribution with the minimum
(L2-norm) current that gives the best account of the measured data.
Another popular family of MEG inverse methods is the beamformer
approach (Van Veen et al., 1997; Gross et al., 2001; Hadjipapas et al.,
2005; Küçükaltun-Yildirim et al., 2006; Barnes and Hillebrand, 2003;
Barnes et al., 2004; Ikezawa et al., 2011; Sekihara et al., 2001; Quraan
et al., 2011; Hillebrand and Barnes, 2005; Kujala et al., 2012, 2008;
Darvas et al., 2004; Popescu et al., 2008; Litvak et al., 2010; Laaksonen
et al., 2012; Gross et al., 2003; Spaak et al., 2014; Rossiter et al., 2012;
Muthuraman et al., 2015; Hui et al., 2010; Diwakar et al., 2011).
Beamformers scan the source space through a set of spatial filters
designed to pass the brain activity from a specified location while
attenuating activity originating at other locations. Interestingly,

although beamformers and MNE are among the most commonly used
methods in MEG source level analysis (Sorrentino and Pascarella,
2011; Hansen et al., 2010; Baillet et al., 2001), these techniques have
primarily been compared in terms of source localization accuracy, but
their effect on subsequent source-level connectivity reconstruction is
only poorly understood and has been largely overlooked in the
literature.

The differences between available methods are largely driven by the
assumptions they make on the sources or on the character of the noise.
While MNE assumes a Gaussian distribution for the noise, beamfor-
mers assume that the noise is uncorrelated with the sources. One
theoretical difference regarding connectivity analysis is that beamfor-
mers assume the sources underlying the measurements to be uncorre-
lated (Van Veen et al., 1997) while MNE does not (Hämäläinen and
Ilmoniemi, 1984, 1994). Several studies have sought to assess the effect
of method selection on source localization and power mapping
(Liljeström et al., 2005; Darvas et al., 2004; Küçükaltun-Yildirim
et al., 2006; Mattout et al., 2006; Sekihara et al., 2005; Hauk et al.,
2011; Lin et al., 2006; Haufe et al., 2011), yet there are hardly any
studies that have directly assessed the impact of method selection on
the subsequent source-level coupling analysis (cf. Schoffelen and Gross,
2009; Hui et al., 2010).

Because MNE and spatial filters are widely used inverse solutions in
MEG, it would be helpful to understand whether they differentially
impact source-level connectivity estimations and, in particular, what
parameters affect their potential difference in performance. Although
beamformers are by construction tuned to work with uncorrelated
sources, they have been shown to be stable to moderately correlated
sources and to even localize completely correlated point-like sources in
the presence of noise (Van Veen et al., 1997; Gross et al., 2001;
Hadjipapas et al., 2005; Sekihara et al., 2005; Küçükaltun-Yildirim
et al., 2006; Kujala et al., 2008; Quraan and Cheyne, 2010). Given that
this assumption about uncorrelated sources is embedded in beamfor-
mer reconstructions, one may ask how it affects the identification of
coherent sources, compared to inverse solutions that do not make such
an assumption (for instance MNE)? Furthermore, how do the con-
nectivity-detection performances of MNE and beamforming compare
when the coupled sources vary in size, or in coupling strength? And
how does the noise level affect the performance of both methods when
it comes to detecting interacting sources? These are all open questions
which we address here via extensive data simulations.

More specifically, the goal of the current study is to investigate the
effect of the inverse method selection on the quality of subsequent
source-space connectivity analyses. In particular, we evaluated the
difference in the ability to correctly uncover oscillatory coupling in
source-space following an initial source estimation step that is either
performed with (a) Minimum Norm Estimate (MNE), (b) Linearly
Constrained Minimum Variance (LCMV) beamformer or (c) Dynamic
Imaging of Coherent Sources (DICS) beamformer. This was achieved
using numerous simulations of oscillatory signals where we varied a
range of parameters, including source size, inter-patch and intra-patch
coherence strengths and signal-to-noise ratio (SNR).

Methods and materials

Although our main objective is to evaluate the effect of using
different methods to estimate coherence between cortical areas, we also
compare the performance of the methods to localize active sources by
evaluating their accuracy in determining the levels of oscillatory power.
This power estimation also allows us to compare our results with other
studies. For the analysis with MNE and LCMV, the time-series of the
signals are first reconstructed and then spectral coherence and power
can be calculated. DICS operates in the frequency domain allowing for
a direct reconstruction of coherence and power. As shown in LCMV
Beamforming and DICS Beamforming, LCMV and DICS beamformers
are based on the same filtering principle, but DICS was especially
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