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A B S T R A C T

Since initial reports regarding the impact of motion artifact on measures of functional connectivity, there has
been a proliferation of participant-level confound regression methods to limit its impact. However, many of the
most commonly used techniques have not been systematically evaluated using a broad range of outcome
measures. Here, we provide a systematic evaluation of 14 participant-level confound regression methods in 393
youths. Specifically, we compare methods according to four benchmarks, including the residual relationship
between motion and connectivity, distance-dependent effects of motion on connectivity, network identifiability,
and additional degrees of freedom lost in confound regression. Our results delineate two clear trade-offs among
methods. First, methods that include global signal regression minimize the relationship between connectivity
and motion, but result in distance-dependent artifact. In contrast, censoring methods mitigate both motion
artifact and distance-dependence, but use additional degrees of freedom. Importantly, less effective de-noising
methods are also unable to identify modular network structure in the connectome. Taken together, these results
emphasize the heterogeneous efficacy of existing methods, and suggest that different confound regression
strategies may be appropriate in the context of specific scientific goals.

Introduction

Resting-state (intrinsic) functional connectivity (rsfc-MRI) has
evolved to become one of the most common brain imaging modalities
(Craddock et al., 2013; Fox and Raichle, 2007; Power et al., 2014b;
Smith et al., 2013; Van Dijk et al., 2010), and has been critical for
understanding fundamental properties of brain organization
(Damoiseaux et al., 2006; Fox et al., 2005; Power et al., 2011; Yeo
et al., 2011), brain development over the lifespan (DiMartino et al.,
2014; Dosenbach et al., 2011; Fair et al., 2008), and abnormalities
associated with diverse clinical conditions (Baker et al., 2014; Buckner
et al., 2008; Fair et al., 2010). rsfc-MRI has numerous advantages,
including ease of acquisition and suitability for a wide and expanding

array of analysis techniques. However, despite knowledge that in-
scanner motion can influence measures of activation from task-related
fMRI (Friston et al., 1996), the impact of in-scanner motion on
measures of functional connectivity was not explored for 16 years after
its initial discovery (Biswal et al., 1995). However, since the near-
simultaneous publication of three independent reports in early 2012
(Van Dijk et al., 2012; Power et al., 2012; Satterthwaite et al., 2012), it
has been increasingly recognized that motion can have a large impact
on rsfc-MRI measurements, and can systematically bias inference. This
bias is particularly problematic in developmental or clinical popula-
tions where motion is correlated with the independent variable of
interest (age, diagnosis) (Satterthwaite et al., 2012; Fair et al., 2012),
and has resulted in the re-evaluation of numerous published findings.
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In response to this challenge, there has been a recent proliferation
of participant-level confound regression and censoring methods aimed
at mitigating the impact of motion on functional connectivity (Yan
et al., 2013a; Power et al., 2015). These methods can be broadly
grouped into several categories. First, high-parameter confound re-
gression strategies use expansions of realignment parameters or tissue-
compartment signals, often including derivative and quadratic regres-
sors (Friston et al., 1996; Satterthwaite et al., 2013; Yan et al., 2013a).
Second, principal component analysis (PCA) based methods
(CompCor; Behzadi et al., 2007; Muschelli et al., 2014) find the
primary directions of variation within high-noise areas defined by
anatomy (e.g., aCompCor) or temporal variance (tCompCor). Third,
whole-brain independent component analysis (ICA; Beckmann et al.,
2005) of single-subject time series has increasingly been used for de-
noising, with noise components selected either by a trained classifier
(ICA-FIX; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) or using
a priori heuristics (ICA-AROMA; Pruim et al., 2015a, 2015b). Fourth,
temporal censoring techniques identify and remove (or de-weight)
specific volumes contaminated by motion artifact, often followed by
interpolation. These techniques include scrubbing (Power et al., 2012,
2014a, 2015), spike regression (Satterthwaite et al., 2013), and de-
spiking (Jo et al., 2013; Patel et al., 2014). Censoring techniques have
been reported to attenuate motion artifact, but at the cost of a shorter
time series and variably reduced degrees of freedom. Fifth, one recent
report emphasized the relative merits of spatially-tailored confound
regression using local white matter signals (wmLocal; Jo et al., 2013).
Finally, the inclusion of global signal regression (GSR) (Macey et al.,
2004) in confound regression models remains a source of controversy
(Fox et al., 2009; Murphy et al., 2009; Chai et al., 2012; Saad et al.,
2012; Yan et al., 2013b; Murphy, in press). While several studies have
suggested its utility in de-noising (Fox et al., 2009; Power et al., 2015;
Satterthwaite et al., 2013; Yan et al., 2013a), other studies have
emphasized the risk of removing a valuable signal (Yang et al., 2014;
Hahamy et al., 2014), potentially biasing group differences (Gotts et al.,
2013; Saad et al., 2012), or exacerbating distance-dependent motion
artifact. Distance-dependent artifact (Power et al., 2012; Satterthwaite
et al., 2012) manifests as increased connectivity in short-range con-
nections, and reduced connectivity in long-range connections, which
has the potential to impact measures of network topology (Yan et al.,
2013b).

Substantial additional work has moved beyond use of realignment
parameters and timeseries signal as regressors. Specifically, recent
work has suggested that techniques such as MotSim may potentially
track more signal variance related to motion (Patriat et al., 2017).
Furthermore, while initial work suggested that voxel-wise motion
regressors were not advantageous, work by Spisák et al. (2014)
suggests that such information can be successfully utilized.
Additionally, one paper evaluated the impact of motion on timeseries
smoothness (Scheinost et al., 2014), and suggested that uniform
smoothing may ameliorate artifact. Finally, recent work has proposed
geometric techniques for correcting motion artifact (e.g., median angle
correction) (He and Liu, 2012) and investigated prospective correction
techniques (Faraji-Dana et al., 2016).

This recent proliferation of de-noising techniques has prompted
excitement but also sowed confusion. Unsurprisingly, new de-noising
pipelines have often tended to emphasize outcome measures that
suggest their relative superiority. As a result, investigators often
anecdotally report substantial uncertainty regarding which pipeline
should be used. Such uncertainty has been exacerbated by the lack of
common outcome measures used across studies, which has hampered
direct comparison among pipelines. While one review paper has
summarized recent developments in this rapidly-evolving sub-field
(Power et al., 2015), systematic evaluation of de-noising pipelines
according to a range of benchmarks remains lacking.

Several prior papers have compared some of these confound
regression strategies on selected benchmark measures. For example,

Yan and colleagues evaluated a range of de-noising strategies based on
realignment parameters (e.g., 6P, 12P, 24P), scrubbing, and GSR (Yan
et al., 2013c). Subsequently, Pruim et al. (2015a) compared ICA-
AROMA to the 24-parameter model, scrubbing, and aCompCor, among
other techniques. Building on such work, Burgess et al. (2016)
examined the relative added value of mean grayordinate time series
regression, which is similar to GSR, as an addition to ICA-based de-
noising (ICA-FIX). However, prior work has not directly evaluated
several of the most commonly implemented de-noising methods, which
combine high-parameter confound regression, GSR, and censoring.

Accordingly, in this report we compare 14 of the most commonly
used confound regression strategies in a large (N=393) dataset of
adolescents and young adults. Pipelines evaluated include standard
techniques, high-parameter confound regression, PCA-based techni-
ques such as aCompCor and tCompcor, ICA-based approaches such as
ICA-AROMA, spatially-tailored local white matter regression, and
three different censoring techniques (spike regression, de-spiking,
and scrubbing); GSR is included in many pipelines as well. It should
be emphasized that this is not a comprehensive evaluation of all
artifact-control strategies in use, and that models evaluated were
limited to a subset of those commonly used at present. Critically, we
compare these pipelines according to four intuitive benchmarks,
including the residual relationship between functional connectivity
and subject motion, the degree of distance-dependent artifact, the
identifiability of network structure after de-noising, and the loss of
temporal degrees of freedom. As described below, results underscore
the relative strengths and weaknesses among these methods, and
reveal clear trade-offs among commonly used confound regression
approaches.

Materials and methods

Participants and data acquisition

The task-free BOLD data used in this study (N=393) were drawn
from the Philadelphia Neurodevelopmental Cohort (PNC)
(Satterthwaite et al., 2014, 2016) on the basis of age, health, and data
quality. All participants selected for evaluation were ages 8-22, were
free from medical conditions that could impact brain function
(Merikangas et al., 2010), lacked gross structural brain abnormalities
(Gur et al., 2013), were not taking psychotropic medication at the time
of the scan, and had high quality imaging data free of gross motion. In
total, N=84 (44 females) participants were not included in this sample
due to gross motion, defined as a mean relative RMS (root mean
squared) displacement >0.2 mm, or >20 volumes with framewise
relative RMS displacement >0.25 mm. The exclusion of participants
with gross in-scanner motion allowed us to evaluate the utility of
confound regression strategies for the mitigation of artifact due to
micro-movements.

Structural and functional subject data were acquired on a 3 T
Siemens Tim Trio scanner with a 32-channel head coil (Erlangen,
Germany), as previously described (Satterthwaite et al., 2014, 2016).
High-resolution structural images were acquired in order to facilitate
alignment of individual subject images into a common space.
Structural images were acquired using a magnetization-prepared,
rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequence
(T = 1810 msR ; T = 3.51 msE ; FoV = 180 × 240 mm; resolution 1 mm
isotropic). Approximately 6 minutes of task-free functional data were
acquired for each subject using a blood oxygen level-dependent
(BOLD-weighted) sequence (T = 3000 msR ; T = 32 msE ;
FoV = 192 × 192 mm; resolution 3 mm isotropic; 124 spatial volumes).
Prior to scanning, in order to acclimate subjects to the MRI environ-
ment and to help subjects learn to remain still during the actual
scanning session, a mock scanning session was conducted using a
decommissioned MRI scanner and head coil. Mock scanning was
accompanied by acoustic recordings of the noise produced by gradient
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