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A B S T R A C T

A growing number of researchers have advocated for the advancement of cognitive neuroscience by blending
cognitive models with neurophysiology. The recently proposed joint modeling framework is one way to bridge
the gap between the abstractions assumed by cognitive models and the neurophysiology obtained by modern
methods in neuroscience. Despite this advancement, the current method for linking the two domains is
hindered by the dimensionality of the neural data. In this article, we present a new linking function based on
factor analysis that allows joint models to grow linearly in complexity with increases in the number of neural
features. The new linking function is then evaluated in two simulation studies. The first simulation study shows
how the model parameters can be accurately recovered when there are many neural features, that mimics real-
world applications. The second simulation shows how the new linking function can (1) properly recover a
representation of the data generating model, even in the case of model misspecification, and (2) outperform the
previous linking function in a cross-validation test. We close by applying a model equipped with the new linking
function to real-world data from a perceptual decision making task. The model allows us to understand how
differences in the model parameters emerge as a function of differences in brain function across speed and
accuracy instruction.

Introduction

The field of cognitive science is faced with many options for
studying how experimentally-derived variables are systematically re-
lated to the dynamics underlying a cognitive process of interest. To
date, much of our understanding of cognition has been advanced by
two dominant, but non-interacting groups. The largest group, cognitive
neuroscientists, rely on statistical models to understand patterns of
neural activity. These models are typically purely data-mining techni-
ques, and often disregard the computational mechanisms that might
detail a cognitive process. The other group, mathematical psycholo-
gists, is strongly motivated by theoretical accounts of cognitive
processes, and instantiates these theories by developing formal math-
ematical models of cognition. The models often assume a system of
computations and equations intended to characterize the process
assumed to take place in the brain. To formally test their theory,
mathematical psychologists rely on their model's ability to fit behavior-
al data. A good fit is thought to reflect an accurate theory, whereas a
bad fit would refute it.

Although both groups are concerned with explaining how the mind

gives rise to behavior, they tend to approach this problem from two
different perspectives. Thinking in terms of Marr (1982)'s levels of
analysis, mathematical psychologists tend to focus on the computa-
tional and algorithmic levels by developing theories about how the
mind works and instantiating these theories with a cognitive model.
Typically, the model possesses a set of statistical or mathematical
mechanisms controlled by a set of parameters. The process of fitting a
model to data produces estimates of these parameters, and these
estimates are then used to articulate the cognitive processes at work
across conditions, subjects, or even groups. On the other hand,
cognitive neuroscientists focus more on the implementation level by
observing how changes in the independent variable of an experiment
give rise to changes in a neural measure of interest. For example, this
approach might correlate the speed of the observed response times
with the measured activations in the brain. While this experimental
approach has served as the cornerstone for major scientific findings
regarding the localization of function, it has been criticized for
contributing little to our theoretical understanding of how the mind
works (Coltheart, 2006). For example, in relating brain measure to
response time, we can say which brain areas correlate with the speed of
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the decision, but we cannot say anything about why because these
analyses are not based on mechanisms of a cognitive model. As one
example, such an analysis would not provide insight into whether a fast
decision arose due to a particularly easy stimulus or due to a quick
guess elicited by the subject.

Our own view is that while progress can be made by maintaining a
tight focus on one level, certain opportunities are missed. As a result of
their single-level focus, both approaches suffer from critical limitations
(Love, 2015), and these limitations have inspired researchers to
combine neural and behavioral measures in an integrative fashion.
The importance of solving the integration problem has spawned several
entirely new statistical modeling approaches (cf. Turner et al., 2016a;
de Hollander et al., 2016) developed through collaborations between
mathematical psychologists and cognitive neuroscientists, collectively
forming a new field often referred to as “model-based cognitive
neuroscience” (e.g., Forstmann and Wagenmakers, 2015; O'Doherty
et al., 2007, 2003; Forstmann et al., 2011; van Maanen et al., 2011;
Turner et al., 2013a; Mack et al., 2013; Boehm et al., 2014; Love, 2015;
Palmeri et al., 2015; Turner et al., 2015; Anderson, 2007; Anderson
et al., 2008a, 2008b; Borst et al., 2010; Cassey et al., 2017). The field of
model-based cognitive neuroscience balances the theoretical focus of
computational models from mathematical psychology with the locali-
zation focus of neuroimaging by seeking out areas of the brain that
correspond directly to mechanisms in the model, rather than experi-
mental variables. This mechanistic focus provides an interesting
opportunity for establishing a common theoretical framework for the
mind, enabling mass aggregation across the entire field of cognitive
neuroscience (cf. Turner et al., 2016b; Love, 2015, 2016).

Joint modeling framework

One approach for performing analyses in model-based cognitive
neuroscience is the recently developed joint modeling framework
(Turner et al., 2013a, 2015, 2016b; Turner, 2015; Cassey et al.,
2017). The joint modeling framework has been used to apply con-
straints to evidence accumulation models derived from structural
properties of the brain (Turner et al., 2013a; Turner, 2015), functional
magnetic resonance imaging (fMRI; Turner et al., 2015), and electro-
encephalography (EEG; Turner et al., 2016b). More recently, Turner
et al. (2016b) extended the framework to propose an alternative
approach for “data fusion”, where patterns in the fMRI, EEG, and
behavioral measures are jointly modeled to gain better insight into the
cognitive process at hand (Love, 2016).

To briefly summarize our approach, a typical joint model consists of
three components. First, the behavioral data B are described in terms
of a behavioral model, such as the classic signal detection theory model
(Green and Swets, 1966). For example, the behavioral data could
consist of response choices, response times, or even confidence
judgments. Importantly, the behavioral model consists of a set of
model parameters θ, which are of lower dimensionality than the full
behavioral data set B. For example, in the SDT model, θ would consist
of parameters such as discriminability (d′) and bias (β). Ideally, the
chosen behavioral model should consist of mechanisms that provide
insight into how the data arise, and how experimental manipulations
predictably affect these mechanisms (a property known as selective
influence; Dzhafarov, 2003; Heathcote et al., 2015). In this way, the
parameters of the model are connected to the experimental manipula-
tions akin to the strategy prevalent in cognitive neuroscience as
discussed above. Second, the neural data N are described in terms of
a neural model. For example, the neural data might consist of the blood
oxygenated level dependence (BOLD) response across time for a set of
voxels, or even changes in the EEG measures across time for a set of
electrodes. The key property of the neural model is that it should
consist of a set of parameters δ that describe the important parts of the
neural data N in a way that is of significantly lower dimensionality. For
example, the neural model could describe increases in neural activity

across time through a general linear model (GLM). Alternatively, the
neural model could also be of a more mechanistic nature, describing
the computations purportedly implemented by a brain region, such as
those seen in topographic latent source analysis (Gershman et al.,
2011; Manning et al., 2014). Third, the features of both the neural and
behavioral data are linked by establishing an explicit relationship
between the behavioral model parameters θ and the neural model
parameters δ.

The focus of the current article centers directly on the third
component of the joint modeling framework. In Turner et al.
(2013a), we generically assumed a linking distribution conjoined
θ and δ such that

θ δ Ω( , ) ∼ ( ),j j

where θj and δj denote the behavioral and neural model parameters for
the jth subject or even jth trial (Turner et al., 2015) respectively, and Ω
consists of a set of hyperparameters governing the linking function.
Here, the term “hyperparameters” refers to parameters in the “hyper
level”, which is one level higher than the level that connects to the data.
There are many types of linking functions one could use. For example,
one could simply regress the parameters θ and δ against one another
such that

θ δ β β σ= + + ϵ, and ϵ ∼ (0, ),j j 1 0

where a b( , ) denotes a normal distribution with mean a and standard
deviation b. Here, the parameters of the linking function are
Ω β β σ= { , , }0 1 . Recently, this approach has been used to link decision
models to fluctuations in neural activity. For example, Nunez et al.
(2015) used EEG data on a perceptual decision making experiment as a
proxy for attention. They controlled the rate of flickering stimuli
presented to subjects to match the sampling rate of their EEG data, a
measure known as the steady-state visual evoked potential.
Importantly, Nunez et al. (2015) showed that individual differences
in attention or noise suppression was indicative of the choice behavior,
specifically it resulted in faster responses with higher accuracy. In a
particularly novel application, Frank et al. (2015) showed how models
of reinforcement learning could be fused with the DDM to gain insight
into activity in the subthalamic nucleus (STN). In their study, Frank
et al. (2015) used simultaneous EEG and fMRI measures as a covariate
in the estimation of single-trial parameters. Specifically, they used pre-
defined regions of interest including the presupplementary motor area,
STN, and a general measure of mid-frontal EEG theta power to
constrain trial-to-trial fluctuations in response threshold, and BOLD
activity in the caudate to constrain trial-to-trial fluctuations in evidence
accumulation. Their work is important because it establishes concrete
links between STN and pre-SMA communication as a function of
varying reward structure, as well as a model that uses fluctuations in
decision conflict (as measured by multimodal activity in the dorsome-
dial frontal cortex) to adjust response threshold from trial-to-trial.

The regressive linking function between θ and δ captures the basic
intuition behind how the neural data are related to the behavioral
model through the regression parameters. However, the most basic
version of this approach does neglect the multivariate nature of the
problem, and often neglects the measurement error present in the
neural data. Typically, we are interested in understanding how
mechanisms in our model are related to many brain areas at once,
and we would like to rule out brain areas that are correlated with our
decision model by virtue of being correlated either functionally or
structurally with other brain areas. This problem, known as multi-
collinearity, can distort our interpretation of the function of these brain
areas simply because our model has assumed that the candidate brain
areas are unrelated to one another.

Another approach is to assume that θ and δ are linked via a
multivariate normal (MVN) distribution (Turner et al., 2013a, 2015,
2016b; Turner, 2015). Formally,
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