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A B S T R A C T

Low power in neuroimaging studies can make them difficult to interpret, and Coordinate based meta-analysis
(CBMA) may go some way to mitigating this issue. CBMA has been used in many analyses to detect where
published functional MRI or voxel-based morphometry studies testing similar hypotheses report significant
summary results (coordinates) consistently. Only the reported coordinates and possibly t statistics are analysed,
and statistical significance of clusters is determined by coordinate density.

Here a method of performing coordinate based random effect size meta-analysis and meta-regression is
introduced. The algorithm (ClusterZ) analyses both coordinates and reported t statistic or Z score, standardised
by the number of subjects. Statistical significance is determined not by coordinate density, but by a random
effects meta-analyses of reported effects performed cluster-wise using standard statistical methods and taking
account of censoring inherent in the published summary results. Type 1 error control is achieved using the false
cluster discovery rate (FCDR), which is based on the false discovery rate. This controls both the family wise
error rate under the null hypothesis that coordinates are randomly drawn from a standard stereotaxic space,
and the proportion of significant clusters that are expected under the null. Such control is necessary to avoid
propagating and even amplifying the very issues motivating the meta-analysis in the first place. ClusterZ is
demonstrated on both numerically simulated data and on real data from reports of grey matter loss in multiple
sclerosis (MS) and syndromes suggestive of MS, and of painful stimulus in healthy controls. The software
implementation is available to download and use freely.

Introduction

Neuroimaging studies often involve few subjects and have low
statistical power to detect true effects, and with lack of power comes
increased risk that significant results are false positives (Button et al.,
2013). Add to this the common use of uncorrected p-value thresholds
(Bennett et al., 2009), and neuroimaging studies can become difficult to
interpret. This situation may be compounded if the data violate the
methodological assumptions of the analysis (Eklund et al., 2016).
Meta-analysis can be used to synthesize the evidence across similar
neuroimaging studies going some way to mitigating these problems
(Ioannidis, 2005), and there are various methods of statistically
combining the results (Lazar et al., 2002). Image based meta-analysis
(IBMA) is the most powerful approach, but is currently limited by
availability of suitable statistical images. Coordinate based meta-
analysis (CBMA), on the other hand, uses just the available summary
reports (coordinates and possibly Z scores or t statistics) from
functional MRI/PET or voxel-based morphometry studies measuring

common effects, and has been utilised in many published studies; the
aim is similar to that of IBMA within the limits of the available data
(Salimi-Khorshidi et al., 2009). The results of CBMA consists of
clusters of coordinates where studies have reported significant effect
in similar anatomical locations, representing concordance and indicat-
ing relevancy of brain structures, while coordinates not recruited into
clusters are considered study specific. Concordance of the reported
coordinates is determined statistically relative to a null hypothesis that
the coordinates in different studies are uncorrelated, which in practice
is simulated by replacing the reported coordinates by random coordi-
nates. Popular CBMA algorithms include the activation likelihood
estimate (ALE) (Turkeltaub et al., 2002; Laird et al., 2005; Eickhoff
et al., 2009, 2012; Turkeltaub et al., 2012) and the multi-level kernel
density (MKDA) algorithm (Wager et al., 2007). Signed differential
mapping (SDM) (Radua et al., 2010) is similar to the ALE but
incorporating the sign of effect at the reported coordinates to distin-
guish grey matter loss from grey matter increase, or fMRI activation
from deactivation. Effect size SDM (ES-SDM) (Radua et al., 2012)
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takes this further and uses the reported t statistic associated with each
coordinate, and can also incorporate statistical parametric maps.

There are technical limitations with these CBMA algorithms that impact
interpretability and specificity. Firstly statistical tests are performed voxel-
wise making the relevant cluster-wise type 1 error rates difficult, if not
impossible, to assess. Secondly the significance is, at least in part,
determined by the density of coordinates from different experiments
meaning that coordinates forming a small cluster are more significant than
if they formed a larger cluster. Yet it is not clear, for example, that studies
reporting thalamic coordinates producing a cluster over the thalamic
volume should be less significant than the same studies reporting
coordinates producing a smaller cluster in the smaller putamen structure.
Finally, the uncorrected p-value threshold employed by both SDM and ES-
SDM does not control the type 1 error rate in a principled way (Bennett
et al., 2009), and without estimated error rates there is no way to assess the
significance of the results given the ~2×105 voxel-wise statistical tests; this
may propagate the very problems the MA was employed to mitigate (see
(Tench et al., 2016) for example).

LocalALE is a CBMA algorithm (Tench et al., 2013, 2014) that
addresses some of these limitations. It employs an interpretable cluster-
level type 1 error rate control scheme, the false cluster discovery rate
(FCDR), made possible by performing statistical tests at the coordinate,
rather than the voxel, level. The results are such that at-most some specified
proportion of the clusters declared significant are expected under the null
hypothesis. LocalALE also adjusts its parameters to avoid false negatives
when there are few studies and avoid false positives when there are many
studies. Furthermore, LocalALE assigns coordinates to clusters in a binary
fashion (belonging to a specific cluster, or no cluster), and as a consequence
can analyse positive and negative effects (activation and deactivation, for
example) simultaneously, allowing post-hoc checks for sign consistency.
Nevertheless, LocalALE is unable to utilise the sign or magnitude of the
reported effect to perform statistical inference, and the cluster significance
is determined by coordinate density biasing the results to smaller clusters.

Here a new coordinate based random effect size (CBRES) meta-
analysis (MA), and meta-regression, method (ClusterZ) is detailed. The
algorithm deviates from other CBMA methods by performing inference
on a standardised effect size, which is related to the Z score or t statistic
reported by most studies. Consequently the density of coordinates
within cluster does not influence statistical significance, so large and
small clusters are considered on an equal footing. A random effects
meta-analysis approach is taken and model parameters are estimated
by maximum likelihood estimation (MLE) and significance assessed by
comparing models using a likelihood ratio test (LRT). This is a
common approach to meta-analysis, and one that has been applied to
neuroimaging studies previously (Costafreda, 2012), but using a
different null hypothesis, that the effect size is zero, to other CBMA
methods. Models can be devised to test for evidence of a non-zero effect
size, effect size difference between groups, or significant linear regres-
sion. ClusterZ also requires consistent spatial effect across studies for
significance, and uses this to control the type 1 error rate such that
quantifiably more clusters are declared significant than are expected if
the studies report uncorrelated spatial effects. Furthermore, it adjusts
parameters to avoid false positive and false negative results depending
on the number of studies. ClusterZ is similar to traditional MA in that
estimates of effect and variance are computed. It provides an alter-
native to ES-SDM for coordinate based meta-analysis but with the
advantage that the type 1 error rate is controlled, quantified, and
interpretable. ClusterZ is implemented into NeuRoi, which can be
downloaded and used freely: https://www.nottingham.ac.uk/research/
groups/clinicalneurology/neuroi.aspx.

Methods

There are several steps to the ClusterZ algorithm, detailed below. In
summary, clusters are formed by reported coordinates that are more
densely packed than average. Then, a random effects analysis is

performed to give a p-value in each cluster. The same analysis is then
performed on many pseudo experiments, in which each coordinate has
been replaced by a random one to simulate studies reporting spatially
uncorrelated effects. Declaration of significance in ClusterZ has two
requirements: 1) that within cluster there is a consistent effect size
reported such that the p-value is small, and 2) for a given p-value
threshold the number of observed clusters with smaller p-values is
quantifiably greater than average for the pseudo experiments. The
second requirement indicates how ClusterZ controls the type 1 errors
through the false cluster discovery rate.

Cluster forming

The clustering algorithm is identical to that used by LocalALE, and
is detailed in Tench et al. (2013) but recapped here. It is based on a
popular algorithm: density based spatial clustering of applications with
noise (DBSCAN) (Ester et al., 1996). The aim is to produce clusters of
densely packed coordinates while not recruiting coordinates outside
these clusters, which DBSCAN considers noise; in the present applica-
tion these coordinates are considered study specific effects rather than
noise. The initial step is a measure of overlap of coordinates in different
studies. A coordinate that overlaps (they are separated by a distance
<Δ) coordinates in n other studies has an overlap score of n. For a
coordinate to be considered part of a cluster, its overlap score must be
at least 3 according to the DBSCAN algorithm, since an overlap score of
2 or less means the coordinate is link in a chain, rather than a cluster,
of coordinates. The peak of any cluster is the coordinate, or collection
of coordinates, with the highest overlap score. The clustering algorithm
proceeds by finding the peak coordinate that is not already assigned to
a cluster and assigns it a cluster number. Coordinates overlapping
members of this cluster, and have equal or lower overlap score, are
recruited to the cluster. This continues until there are no more valid
overlapping coordinates to be added to the cluster. The process then
continues starting with the coordinate with the highest overlap score
that is not already part of a cluster. The result is a set of clusters of
coordinates that have a reducing (but not strictly) overlap score moving
away from the peak; this can help to prevent close neighbouring
clusters merging into one bigger cluster (Tench et al., 2013).

The clustering process depends on the clustering distance Δ, which
is analogous to the FWHM parameter used in other CBMA algorithms
(Turkeltaub et al., 2002; Radua et al., 2010), and the algorithm to
compute this has been detailed previously (Tench et al., 2014). The
choice of Δ is determined by three aims of the clustering algorithm: 1)
to allow the true clusters to form, 2) to prevent study specific
coordinates forming clusters, and 3) to prevent study specific co-
ordinates being recruited into the true clusters. The first aim requires
Δ to be large enough so that the densely packed coordinates within-
cluster overlap. The second and third aims conversely require Δ to be
small such that the low density coordinates falling between the
clusters do not overlap on average. The density of coordinates within,
and between, clusters is unknown, but the density of random
coordinates can be estimated, and in the true clusters the coordinates
are more densely packed than this and between clusters the coordi-
nates are packed with lower density on average. The algorithm
proceeds by redistributing the coordinates randomly (see below)
within an anatomical mask, which depending on the problem might
be a grey-matter, white-matter, or whole-brain mask. For these
coordinates a small value of Δ results in few coordinates having
non-zero overlap scores, but this increases for larger Δ. It is helpful to
consider the proportion of coordinates with non-zero overlap scores
(divided by 2 to avoid coordinate A overlapping coordinate B being
considered a second time as B overlapping A) as a function of the
clustering distance: ϕ(Δ), the overlap fraction. The clustering distance
used is that Δ which, on average, just causes each random coordinate
to overlap with another in one other study such that ϕ(Δ)=0.5. With
this value of Δ the coordinates within the clusters become density
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