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A B S T R A C T

Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial
layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel
the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes
at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing
neural representations robust to changes in unrelated scene properties and viewing conditions. For a
quantitative model of how scene size representations may arise in the brain, we compared MEG data to a
deep neural network model trained on scene classification. Representations of scene size emerged intrinsically
in the model, and resolved emerging neural scene size representation. Together our data provide a first
description of an electrophysiological signal for layout processing in humans, and suggest that deep neural
networks are a promising framework to investigate how spatial layout representations emerge in the human
brain.

Introduction

Perceiving the geometry of space is a core ability shared by all animals,
with brain structures for spatial layout perception and navigation
preserved across rodents, monkeys and humans (Epstein and
Kanwisher, 1998, 1998; Doeller et al., 2008, 2010; Moser et al., 2008;
Epstein, 2011; Jacobs et al., 2013; Kornblith et al., 2013; Vaziri et al.,
2014). Spatial layout perception, the demarcation of the boundaries and
size of real-world visual space, plays a crucial mediating role in spatial
cognition (Bird et al., 2010; Epstein, 2011; Kravitz et al., 2011a; Wolbers
et al., 2011; Park et al., 2015) between image-specific processing of
individual scenes and navigation-related processing. Although the cortical
loci of spatial layout perception in humans have been well described
(Aguirre et al., 1998; Kravitz et al., 2011b; MacEvoy and Epstein, 2011;
Mullally and Maguire, 2011; Park et al., 2011; Bonnici et al., 2012), the
dynamics of spatial cognition remain unexplained, partly because neuro-
nal markers indexing spatial layout processing remain unknown, and
partly because quantitative models of spatial layout processing are
missing. The central questions of this study are thus twofold: First, what
are the temporal dynamics with which representation of spatial layout
emerge in the brain? And second, how can the emergence of representa-
tions of spatial layout in cortical circuits be modeled?

The temporal dynamics of spatial layout processing

Given the intermediate position of spatial layout perception in the
visual processing hierarchy between image-specific processing of
individual scenes and navigation-related processing, we hypothesized
that a signal for spatial layout processing would emerge after signals
related to low-level visual processing in early visual regions (~100 ms,
(Schmolesky et al., 1998; Cichy et al., 2015a)), and before activity
observed typically in navigation-related regions such as the hippocam-
pus (~400 ms (Mormann et al., 2008)). Further, to be considered as an
independent step in visual scene processing, spatial layout must be
processed tolerant to changes in low-level features, including typical
variations in viewing conditions, and to changes in high-level features
such as scene category. We thus hypothesized that representation of
spatial layout would be tolerant to changes in both low- and high-level
visual properties.

To investigate, we operationalized spatial layout as scene size, that
is the size of the space a scene subtends in the real-world (Kravitz et al.,
2011a; Park et al., 2011, 2015). Using multivariate pattern classifica-
tion (Carlson et al., 2013; Cichy et al., 2014; Isik et al., 2014) and
representational similarity analysis (Kriegeskorte, 2008; Kriegeskorte
and Kievit, 2013; Cichy et al., 2014) on millisecond-resolved magne-
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toencephalography data (MEG), we identified a marker of scene size
around 250 ms, preceded by and distinct from an early signal for
lower-level visual analysis of scene images at ~100ms. Furthermore, we
demonstrated that the scene size marker was independent of both low-
level image features (i.e. luminance, contrast, clutter, image identity)
and semantic properties (the category of the scene, i.e. kitchen,
ballroom), thus indexing neural representations robust to changes in
viewing conditions as encountered in real-world settings.

A model of scene size representations

As an intermediate visual processing stage, spatial layout perception
is likely to be underpinned by representations in intermediate- and high-
level visual regions, where neuronal responses are often complex and
nonlinear. To model such visual representations, complex hierarchical
models might be necessary. We thus hypothesized that representation of
scene size would emerge in complex deep neural networks, rather than
in compact models of object and scene perception. To investigate, we
compared brain data to a deep neural network model trained to perform
scene categorization (Zhou et al., 2014, 2015), termed deep scene
network. The deep scene network intrinsically exhibited receptive fields
specialized for layout analysis, such as textures and surface layout
information, without ever having been explicitly taught any of those
features. We showed that the deep scene neural network model
predicted the human neural representation of single scenes and scene
space size better than a deep object model and standard models of scene
and object perception HMAX and GIST (Riesenhuber and Poggio, 1999;
Oliva and Torralba, 2001). This demonstrates the ability of the deep
scene model to approximate human neural representations at successive
levels of processing as they emerge over time.

In sum, our results give a first description of an electrophysiological
signal for scene space processing in humans, providing evidence for
representations of spatial layout emerging between low-level visual and
navigation-related processing. They further offer a novel quantitative
and computational model of the dynamics of visual scene space
representation in the cortex, suggesting that spatial layout representa-
tions naturally emerge in cortical circuits learning to differentiate
visual environments (Oliva and Torralba, 2001).

Materials and methods

Participants

Participants were 15 right-handed, healthy volunteers with normal
or corrected-to-normal vision (mean age ± s.d.=25.87 ± 5.38 years, 11
female). The Committee on the Use of Humans as Experimental
Subjects (COUHES) at MIT approved the experiment and each
participant gave written informed consent for participation in the
study, for data analysis and publication of study results.

Stimulus material and experimental design

The image set consisted of 48 scene images differing in four factors
with two levels each, namely two scene properties: physical size (small,
large) and clutter level (low, high); and two image properties: contrast
(low, high) and luminance (low, high) (Fig. 1A). There were 3 unique
images for every level combination, for example 3 images of small size,
low clutter, low contrast and low luminance. The image set was based
on behaviorally validated images of scenes differing in size and clutter
level, sub-sampling the two highest and lowest levels of factors size and

Fig. 1. Image set and single-image decoding. A) The stimulus set comprised 48 indoor scene images differing in the size of the space depicted (small vs. large), as well as clutter,
contrast, and luminance level; here each experimental factor combination is exemplified by one image. The image set was based on behaviorally validated images of scenes differing in
size and clutter level, de-correlating factors size and clutter explicitly by experimental design (Park et al., 2015). Note that size refers to the size of the real-world space depicted on the
image, not the stimulus parameters; all images subtended 8 visual angle during the experiment. B) Time-resolved (1 ms steps from -100 to +900 ms with respect to stimulus onset) pair-
wise support vector machine classification of experimental conditions based on MEG sensor level patterns. Classification results were stored in time-resolved 48×48 MEG decoding
matrices. C) Decoding results for single scene classification independent of other experimental factors. Decoding results were averaged across the dark blocks (matrix inset), to control
for luminance, contrast, clutter level and scene size differences. Inset shows indexing of matrix by image conditions. Horizontal line below curve indicates significant time points (n=15,
cluster-definition threshold P < 0.05, corrected significance level P < 0.05); gray vertical line indicates image onset.
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