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ARTICLE INFO ABSTRACT

Keywords:: Effective connectivity is commonly assessed using blood oxygenation level-dependent (BOLD) signals. In
DCM (Havlicek et al., 2015), we presented a novel, physiologically informed dynamic causal model (P-DCM) that
Effective connectivity extends current generative models. We demonstrated the improvements afforded by P-DCM in terms of the
ASL X ability to model commonly observed neuronal and vascular transients in single regions. Here, we assess the
BOLD Slgnal, . ability of the novel and previous DCM variants to estimate effective connectivity among a network of five ROIs
Hemodynamic transients . . . . e
driven by a visuo-motor task. We demonstrate that connectivity estimates depend sensitively on the DCM used,
due to differences in the modeling of hemodynamic response transients; such as the post-stimulus undershoot
or adaptation during stimulation. In addition, using a novel DCM for arterial spin labeling (ASL) fMRI that
measures BOLD and CBF signals simultaneously, we confirmed our findings (by using the BOLD data alone and
in conjunction with CBF). We show that P-DCM provides better estimates of effective connectivity, regardless of
whether it is applied to BOLD data alone or to ASL time-series, and that all new aspects of P-DCM (i.e. neuronal,
neurovascular, hemodynamic components) constitute an improvement compared to those in the previous DCM
variants. In summary, (i) accurate modeling of fMRI response transients is crucial to obtain valid effective
connectivity estimates and (ii) any additional hemodynamic data, such as provided by ASL, increases the ability

to disambiguate neuronal and vascular effects present in the BOLD signal.

Introduction

Functional neuroimaging is widely used to investigate functional
integration in the human brain (Friston, 2011), which is commonly
characterized by functional or effective connectivity (Friston, 1994).
While functional connectivity describes statistical dependencies among
brain activations at the level of observed data, effective connectivity is
defined as causal influence that (inferred) neuronal systems exert over
another. Thus, determining effective connectivity requires a physically
and physiologically motivated (causal) model linking local activation
and distributed interactions among neuronal responses to the mea-
sured data. The requisite generative models have been proposed for
several noninvasive neuroimaging modalities, such as functional
magnetic resonance imaging (fMRI) (Friston et al., 2003) and electro-
and magneto- encephalography (EEG and MEG) (David et al., 2006;
Valdes Sosa et al., 2009) or functional near-infrared spectroscopy
(INIRS) (Tak et al., 2015).

* Corresponding author.

A prominent modeling framework for estimating effective connec-
tivity from BOLD data is dynamic causal modeling (DCM) (Friston
et al., 2003). DCM has been extensively used both in healthy subjects
and patient studies (see e.g. review by Seghier (2010) and references
therein). The generative model of DCM for fMRI data comprises: (i) a
neuronal model, in which neuronal activity in one region causes
changes in its own activity (via intrinsic connections) and neuronal
activity in distal regions (via long-range extrinsic connections); (ii) a
model of neurovascular coupling (NVC) that links region-specific
neuronal activity to local changes in cerebral blood flow (CBF); (iii) a
hemodynamic model that transforms blood inflow to changes in
cerebral blood volume (CBV) and blood oxygenation; and finally (iv)
a physical model translating these changes into the measured BOLD
signal.

To estimate effective connectivity from fMRI data using DCM,
testable hypotheses about how brain areas are connected and how they
change with tasks are required. These hypotheses entail assumptions

E-mail addresses: m.havlicek@maastrichtuniversity.nl (M. Havlicek), kamil.uludag@maastrichtuniversity.nl (K. Uludag).
1 Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC), Faculty of Psychology & Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht,

The Netherlands. Visiting address: Oxfordlaan 55, 6229ER, The Netherlands.

http://dx.doi.org/10.1016/j.neuroimage.2017.03.017
Received 6 July 2016; Accepted 8 March 2017
Available online 18 March 2017

1053-8119/ © 2017 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2017.03.017
http://dx.doi.org/10.1016/j.neuroimage.2017.03.017
http://dx.doi.org/10.1016/j.neuroimage.2017.03.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.03.017&domain=pdf

M. Havlicek et al.

about the connectivity architecture, and how it is affected by experi-
mental manipulations (Stephan et al., 2010). Then, using Bayesian
inference, DCM fits the BOLD data by tuning the connectivity and
hemodynamic parameters so that the discrepancy between modeled
and observed fMRI time-courses is minimized under complexity
constraints (Penny et al., 2010). This means that the aim of DCM is
not only to provide accurate fits to observed data, but also to account
for the model complexity, such that more complex models are auto-
matically penalized. The ensuing Bayesian approach enables one not
only to estimate model parameters, but also to compare different
models in terms of their evidence; i.e. accuracy minus complexity
(Penny et al., 2010).

Although Bayesian model selection (BMS) is typically used to
choose between different neuronal architectures, it can also be used
to identify the most likely physiological or physical mechanism under-
lying any component of the generative model ((i-iv) above). Examples
of this sort of Bayesian model comparison can be found in Stephan
et al. (2008, 2007), who compared linear vs. nonlinear neuronal
connectivity models and several forms of BOLD generation equations.
Furthermore, Marreiros et al. (2008) compared single-state vs. two-
state neuronal models, while Rosa et al. (2011) compared different
types of electro-physiological models of NVC, using simultaneous EEG
and fMRI recordings.

Recently, we introduced a physiologically informed generative
model for BOLD DCM (Havlicek et al., 2015), called P-DCM, which
extended and updated the standard model used in DCM for fMRI (S-
DCM) (Friston et al., 2003) and two-state extension (2S-DCM)
(Marreiros et al., 2008) in four key aspects (see also Fig. 1):

1. At the neuronal level, we model local neuronal activity as interacting
excitatory and inhibitory (E-I) neuronal populations, allowing fine-
tuning of adaptive responses during stimulation and post-stimula-
tion periods — of the sort seen in electrophysiological data. Different
brain areas are effectively connected via positive and negative long-
range extrinsic connections among excitatory populations.

. The neurovascular coupling (NVC) — CBF changes evoked by
changes in neuronal activity — is strictly feedforward. That is, CBF
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represents a smoothed version of the neuronal activity.

. In the hemodynamic model, CBV can be uncoupled from CBF during
transient periods due to viscoelastic properties of the post-capillary
blood compartments (as in the original balloon model (Buxton et al.,
1998)).

. Finally, sequence-specific parameters of the BOLD signal equation
were provided for both GE and SE MRI sequences and for different
magnetic field strengths.

In our previous paper (Havlicek et al., 2015), we demonstrated that
these extensions allow for a more accurate modeling of single-ROI
BOLD responses compared to S-DCM and 2S-DCM, while simulta-
neously providing higher statistical evidence. This was, in particular,
due to the more accurate characterization of the neuronal and vascular
origins of the BOLD signal transients; such as response adaptation and
post-stimulus undershoot. In the current paper, we evaluate the
consequences of model differences when modeling effective connectiv-
ity between regions.

The separation of neuronal from hemodynamic parameters in any
variant of DCM can be confounded by the fact that the BOLD signal
results from a complex interplay between region-specific CBF, CBV and
cerebral metabolic rate of oxygen metabolism (CMRO,). That is, even
for the same neuronal activity, the BOLD signal time-course can vary
between different subjects, brain areas and even voxels in the same
brain area due to differences in NVC and CBF-CBV coupling (e.g. see
Handwerker et al. (2004), Renvall et al. (2014)). This means that
vascular transients can mask or distort neuronal transients. Therefore,
any additional experimental data that allows disentangling neuronal
and ensuing vascular transients has the potential to increase the
validity of the connectivity estimates offered by DCM.

In principle, DCM can also be applied to other fMRI acquisition
modalities, such as arterial spin labeling (ASL) (Liu and Brown, 2007),
which additionally measures cerebral blood flow (CBF), or vascular
occupancy (VASO) (Huber et al., 2014; Lu et al, 2003), which
measures cerebral blood volume (CBV). In fact, when considering the
causal chain of physiological processes that follows neuronal activation,
CBF and CBV signals are more closely related to the neuronal signal
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Fig. 1. Scheme illustrating the organization of generative models entailed by S-DCM, 2S-DCM and P-DCM. Three main parts of the generative models; i.e. neuronal model,
neurovascular coupling and hemodynamic model, are colored in blue, orange and green, respectively. Main differences in P-DCM with respect to S- and 2S-DCM (see Havlicek (2015))
are highlighted with red color, such as the adaptive part of the two state-neuronal model, feedforward NVC and CBF-CBV uncoupling modeled in the blood outflow. The parameters that
are associated with optimization of specific model components during DCM analyzes are displayed.
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