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A B S T R A C T

Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy
(fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world
experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely
challenging and time-consuming. Here, we present a novel analysis method based on the general linear model
(GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from
real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a
proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and
mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task
(involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of
89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the
lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS
experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data
recorded by a wearable system on one participant during a complex real-world prospective memory experiment
conducted outside the lab. As part of the experiment, there were four and six events (actions where participants
had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a
person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for
conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data
from the video recordings of the movements and actions of the participant. Our results suggest that “brain-first”
rather than “behaviour-first” analysis is possible and that the present method can provide a novel solution to
analyse real-world fNIRS data, filling the gap between real-life testing and functional neuroimaging.

Introduction

Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging
technique able to measure concentration changes in oxygenated
(HbO2) and deoxygenated (HHb) haemoglobin secondary to neuronal
activation. Like functional Magnetic Resonance Imaging (fMRI), fNIRS
is a neurovascular coupling-based neuroimaging technique that re-
covers the hemodynamic response related to functional brain activity.
While fMRI relies on the paramagnetic nature of HHb to measure the
blood oxygen level-dependent (BOLD) response, fNIRS optically
detects changes in HbO2 and HHb taking advantage of the low
absorption of the biological tissue in the near-infrared range (700–

1000 nm) (see Scholkmann et al. (2014a) for a review). Whilst fNIRS is
a relatively new neuroimaging method, over the last 20 years it has
become a popular tool for clinical and psychological applications (Boas
et al., 2014), being extensively used to monitor brain activity in
response to a wide variety of cognitive tasks. The fast spreading of
this technology is also related to the advantages that the technique
offers. For example, thanks to its being non-invasive, portable and
robust to motion artifacts, fNIRS is suitable: (i) for a wide variety of
populations (e.g., clinical patients, infants, elderly people), (ii) for
bedside monitoring, and (iii) for those experimental situations that
cannot be easily recreated within the physical constraints of an fMRI
scanner because require the volunteer to have unconstraint physical
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movements (Scholkmann et al., 2014a; Quaresima and Ferrari, 2016).
In fact, while motion artifacts can represent a major obstacle both for
fMRI and electrophysiological techniques, such as electroencephalo-
graphy (EEG) measurements, fNIRS is more robust against this issue
and thus more suitable for tasks involving unconstrained physical
movements. The development of wireless, miniaturized and fiberless
fNIRS systems, opens up the way to more ecological applications in
neuroscience, especially for those situations in which experiments
conducted in the real-world are needed (Burgess et al., 2006;
McKendrick et al., 2016; Pinti et al., 2015a).

For instance, mental workload and situation awareness in augmen-
ted reality wearable displays (ARWDs) are assessed traditionally by
questionnaires administered during task probes, pauses or at the end of
the experiment. However, these measures are less ecologically valid
than measures taken in dynamic situations with mobile participants.
Thanks to the new generation of wearable fNIRS devices, we have
demonstrated their applicability for monitoring prefrontal cortex
activation in freely moving subjects outside the lab (Pinti et al.,
2015a); and recently, others (McKendrick et al., 2016) were able to
assess mental workload and situation awareness during navigation in
ARWDs in similar naturalistic situations. Wearable fNIRS devices can
also be used in non-invasive Brain Computer Interface (BCI) systems to
detect task-related brain activations in less restrained situations and
control external devices for e.g. neuro-rehabilitation, communication
or motor restoration (see Naseer and Hong (2015) for a review). In
addition, monitoring brain activity in real life scenarios may also be
particularly important in the study of executive functions, the high-
level processes used to control and organise other mental processes in
order to enable flexible goal-directed behaviour (Gilbert and Burgess,
2008; Lezak, 1995; Miller and Cohen, 2001). Previous studies have
suggested that standard lab-based neuropsychological tests may be
insensitive to executive function difficulties of patients with frontal lobe
lesions, which can be revealed in more naturalistic real-world tasks
(Burgess et al., 2006; Shallice and Burgess, 1991). Motivated by this,
our team demonstrated the feasibility of investigating one aspect of
executive function (prospective memory) using a fiberless and wearable
fNIRS system (Pinti et al., 2015a). This allowed the measurement of
prefrontal cortex hemodynamics of freely moving participants perform-
ing a prospective memory experiment outside the lab.

So far, fNIRS has been used mostly to monitor functional brain
activity in response to computer-based cognitive tasks in conventional
laboratory settings. Given the slow nature of the hemodynamic
response, fNIRS and fMRI lab-based protocols are designed very
similarly (Strangman et al., 2002). Lab-based experiments are usually
structured as event- or block-related designs, in which task periods are
spaced out by low-level baseline periods and stimuli are repeated
multiple times in order to maximize the Signal-to-Noise ratio (SNR).

In the early stages of fNIRS research, brain activation was assessed
typically by visual inspection or application of thresholds to the signals
(Benaron et al., 2000; Murata et al., 2002; Tak and Ye, 2014). However,
in order to get more rigorous and statistically meaningful interpreta-
tion of fNIRS data, the main approaches that have been adopted to
infer changes in functional activity are averaging techniques, General
Linear Models (GLM) and data-driven methods. The averaging
approach consists in averaging signals across task and rest periods
and in assessing brain activation by statistically testing (e.g., through t-
tests or ANOVAs) the difference between task and rest average values.
The advantage of these methods is that they do not have to make very
accurate assumptions about the timing and/or the shape of the
haemodynamic signal; however, the disadvantage is that they do not
make use of the high temporal resolution of fNIRS (Tak and Ye, 2014).
By contrast, the GLM method overcomes this issue and considers the
entire fNIRS time course, providing more statistical power. The GLM is
a well-established regression approach widely used for fMRI data
analysis (Friston et al., 1994a), which has been extended for fNIRS
applications, as both techniques recover the hemodynamic response. In

the GLM analysis, fNIRS data are regressed using a linear combination
of explanatory variables (i.e., regressors) plus an error term. Such task-
related regressors are created by convolving boxcar functions, which
reflect the experimental design, with a hemodynamic response function
(HRF). The beginning and end of each function event is coded by the
shape of the boxcar function, or, in the limiting case of an event with
duration zero, a delta function. The design matrix is comprised by task-
related regressors plus a constant term and models the expected
hemodynamic response to the assigned cognitive task. However, whilst
the GLM method presents different advantages, assumptions have to
be made on the shape and timing of the HRF (Tak and Ye, 2014). Other
data-driven approaches have been proposed as well for the analysis of
task-evoked activity measured through fNIRS, such as Principal
Component Analysis (PCA), Independent Component Analysis (ICA)
and Task-Related Component Analysis (TRCA). These methods do not
make any a-priori hypothesis of the HRF shape and rely on the
assumption that fNIRS data are a mixture of task-related and task-
unrelated components (Tanaka et al., 2013). Through these ap-
proaches, fNIRS data are decomposed into independent components
assuming statistical independence between source signals. Task-related
components are then identified, for example using a threshold of the
mean inter-trial cross-correlation (Patel et al., 2011), maximizing the
inter-trial covariance (Tanaka et al., 2013) or maximizing both inter-
trial correlations and the covariance between HbO2 and HHb (Tanaka
et al., 2014).

However, in order to create the boxcar function in the GLM
approach, to compute task and rest mean values in the averaging
method or to calculate the inter-trial correlations in data-driven
methods, the timing of the event onsets must be known. In lab-based
experiments such a timeline is established and controlled, the trial
order is known a-priori and all the stimuli timings are triggered and
recorded. However, this is not necessarily the case in real-world
experiments conducted outside the lab, which are designed to be more
ecological and to mirror real-life situations, without predetermined and
controlled stimulus presentation. Whilst rules and some explicit targets
can be used, the timing control can be very unpredictable. For example,
in our previous study (Pinti et al., 2015a), participants were asked to
perform a task in which they were required to remember delayed
intentions (i.e. prospective memory) whilst walking freely in an
outdoor environment. They were left free to accomplish the task
without significant restraints, encountering different type of stimuli
(e.g., obstacles, people, sounds, and so on) while they walked, looked
around, crossed the streets and interacted with the environment. In
addition, inter-subject variability needs to be taken into account as
each participant is exposed to different stimuli and can use his/her own
strategy to accomplish the task. Functional events in the real-world
thus originate from the integration of complex and highly variable
behaviours, which may be hard to identify from e.g., the behavioural
analyses of video recordings. The identification of the event onsets from
video examinations can be extremely difficult, time consuming and,
sometimes, inaccurate as, for instance, it can be hard to predict if the
real functional event in a freely moving participant occurs when they
see the target stimulus or when they reach it.

In order to automatically disentangle these events and improve the
identification of various behavioural actions through assessment of
behavioural data (such as video recordings), in this study we propose a
novel GLM-based method for the Automatic IDentification of func-
tional Events (AIDE) that statistically detects functional events directly
from fNIRS neuroimaging data. Rather than taking the standard
approach of starting with a predetermined experimental design and
investigating the effects of its events on haemodynamic activity, here
we take the opposite approach of starting with neuroimaging data and
seeking to identify the occurrence of experimental events on the basis
of it. This algorithm is based on the GLM model and identifies
functional events by evaluating the best fit between different models
of functional activity, assembled considering all the possible combina-
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