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A B S T R A C T

Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and
invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights.
In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy,
synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and
genetics). While growing data availability and information granularity have been amply discussed, we direct
attention to a less explored question: How will the unprecedented data richness shape data analysis practices?
Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and
pathological brain measurements. We argue that large-scale data analysis will use more statistical models that
are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical
hypothesis testing with out-of-sample predictions.

Introduction

During most of neuroscience history, before the emergence of
genomics and brain imaging, new insights were "inferred" with little
or no reliance on statistics. Qualitative, sometimes anecdotal reports
have documented impairments after brain lesion (Harlow, 1848),
microscopical inspection of stained tissue (Brodmann, 1909), electrical
stimulation during neurosurgery (Penfield and Perot, 1963), targeted
pharmacological intervention (Clark et al., 1970), and brain connec-
tions using neuron-transportable dyes (Mesulam, 1978). Connectivity
analysis by axonal tracing studies in monkeys exemplifies biologically
justified "inference" with many discoveries since the 60 s (Köbbert
et al., 2000). A colored tracer substance is injected in vivo into source
region A, uptaken by local neuronal receptors, and automatically
transported in axons to target region B. This observation in a single
monkey allows extrapolating a monosynaptical connection between
region A and B to the entire monkey species (Mesulam, 2012). Instead,
later brain-imaging technology propelled the data-intensive character-
ization of the mammalian brain and today readily quantifies axonal
connections, cytoarchitectonic borders, myeloarchitectonic distribu-

tions, neurotransmitter receptors, and oscillatory coupling (Amunts
et al., 2013; Frackowiak and Markram, 2015; Kandel et al., 2013; Van
Essen et al., 2012). Following many new technologies to generate
digitized yet noisy brain data, drawing insight from observations in the
brain henceforth required assessment in the statistical arena.

In the quantitative sciences, the invention and application of
statistical tools has always been dictated by changing contexts and
domain questions (Efron and Hastie, 2016). The present paper will
therefore examine how statistical choices are likely to change due to the
progressively increasing granularity of digitized brain data. Massive
data collection is a game changer in neuroscience (Kandel et al., 2013;
Poldrack and Gorgolewski, 2014), and in many other public and private
areas (House of Commons, 2016; Jordan et al., 2013; Manyika et al.,
2011). There is a growing interest in and pressure for data sharing,
open access, and building "big data" repositories (Frackowiak and
Markram, 2015; Lichtman et al., 2014; Randlett et al., 2015). For
instance, UK Biobank is a longitudinal population study dedicated to
the genetic and environmental influence on mental disorders and other
medical conditions (Allen et al., 2012; Miller et al., 2016). 500,000
enrolled volunteers undergo an extensive battery of clinical diagnostics
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from brain scans to bone density with a > 25 year follow-up. In the US,
the Precision Medicine Initiative announced in 2015 to profile
1,000,000 individuals (Collins and Varmus, 2015). Targeted analysis
of such national and international data collections may soon become
the new normal in basic and clinical neuroscience. In this opinion
paper, we will inspect the statistical scalability to the data-rich scenario
from four different formal perspectives: i) parametric versus non-
parametric models, ii) discriminative versus generative models, and iii)
frequentist versus Bayesian models, as well as iv) classical hypothesis
testing and out-of-sample generalization.

Towards adaptive models

Parametric models seek to capture underlying structure in data,
which is representable with a fixed number of model parameters. For
instance, many parametric models with Gaussianity assumptions will
attempt to fit Gaussian densities regardless of the underlying data
distribution. On the other hand, we think of non-parametric models as
typically making weaker assumptions about the underlying data
structure, such that the model complexity is data-driven, the expressive
capacity does not saturate, the model structure can adapt flexibly, and
the prediction can grow more sophisticated (see Box 1 for elaboration).
Certain non-parametric models (e.g., Parzen window density estima-
tion) will converge to the true underlying data distribution with
sufficient data (although the amount of needed data might be astro-
nomical). With increasing data samples, non-parametric models thus
tend to make always-smaller error in capturing underlying structure in
data (Devroye et al., 1996; Bickel et al., 2007). Relating these
considerations back to the deluge of data from burgeoning neu-
roscience consortia, "the main concern is underfitting from the choice
of an overly simplistic parametric model, rather than overfitting."
(Ghahramani, 2015, p. 454). We therefore believe that non-parametric
models have the potential to extract arbitrarily complex perceptual
units, motor programs, and neural computations directly from healthy
and diseased brain measurements.

In our opinion, the expressive capacity of many parametric models
to capture cognitive and neurobiological processes is limited and

cannot adaptively increase if more input data are provided. For
instance, independent component analysis (ICA) is an often-used
parametric model that extracts a set of macroscopic networks with
coherent neural activity from brain recordings (Calhoun et al., 2001;
Beckmann et al., 2009). Applied to human functional magnetic
resonance imaging (fMRI) data, ICA reliably yields the default mode
network, saliency network, dorsal attention network, and other cano-
nical brain networks (Damoiseaux et al., 2006; Seeley et al., 2007;
Smith et al., 2009). Standard ICA is parametric in the sense that the
algorithm extracts a user-specified number of spatiotemporal network
components, although the "true" number of macroscopic brain net-
works is unknown or might be ambiguous (Eickhoff et al., 2015). By
coupling standard ICA with approximate Bayesian model selection
(BMS), Beckmann and Smith (2004) allowed the number of compo-
nents to flexibly adapt to brain data. The combination of parametric
ICA and BMS yields an integrative modeling approach that exhibits the
scaling property of non-parametric statistics (Goodfellow et al., 2016,
p. 112; Ghahramani, 2015, p. 454): With increasing amount of input
data, ICA with BMS adaptively calibrates the model complexity by
potentially extracting more brain network components, thus enhancing
the expressive power of classical ICA.

These advantages are inherent to non-parametric models that can
potentially extract an always higher number of neural patterns that are
adaptively described by an always higher, theoretically infinite
number of model parameters as the amount of input data increase
(Orbanz and Teh, 2011; Ghahramani, 2013). In doing so, we believe
non-parametric models can potentially isolate representations of
neurobiological phenomena that do not only improve quantitatively
(e.g., increased statistical certainty) but also qualitatively (e.g., a much
different, more detailed representation). We propose that non-para-
metric models are hence more likely to extract neurobiological
relationships that exclusively emerge in large brain datasets. In
contrast, parametric models are often more easily interpretable by
the investigator, are more stable, and require less data to achieve a
satisfactory model fit. Furthermore, parametric statistical tests are
often more powerful, assuming the parametric assumptions are correct
(cf. Friston, 2012; Eklund et al., 2016). These practical advantages are

Box 1: Parametric and non-parametric models

Contrary to common misunderstanding, both parametric and non-parametric statistical models involve parameters. 'Non-parametric' is
typically defined in one of three different flavors (Bishop, 2006; Murphy, 2012; James et al., 2013): The first, perhaps most widespread meaning
implies those statistical models that do not make explicit assumptions about a particular probability distribution (e.g., Gaussian distribution)
from which the data have arisen. As a second and more general definition, non-parametric models do not assume that the structure of the
statistical model is fixed. The third definition emphasizes that in non-parametric models, the number of model parameters increases explicitly
or implicitly with the number of available data points (e.g., number of participants in the dataset). In contrast, the number of model parameters
is fixed in parametric models and does not vary with sample size (Fig. 1). In its most extreme manifestation, non-parametric models might
utilize larger memory than the actual input data themselves. Please note that the non-parametric scaling property of increasing model
complexity with accumulating data can be obtained in different ways: i) a statistical model with infinitely many parameters or ii) a nested series
of parametric models that can increase the number of parameters as needed (Ghahramani, 2015, page 454; Goodfellow et al., 2016, page 112).

The flexible non-parametric models include random forests (a special kind of decision-tree algorithm), boosting, nearest-neighbor
algorithms (where complexity increases with the amount of input data), Gaussian Process methods, kernel support vector machines, kernel
principal component analysis (kernel PCA), kernel ICA, kernel canonical correlation analysis, generalized additive models, and hierarchical
clustering, as well as many forms of bootstrapping and other resampling procedures. Statistical models based on decision trees often constrain
their size, which turns them into parametric models in practice. The more rigid parametric models include Gaussian mixture models, linear
support vector machines, PCA, ICA, factor analysis, classical canonical correlation analysis, and k-means clustering, but also modern regression
variants using sparsity or shrinkage regularization like Lasso, elastic net, and ridge regression.
Classical statistics has always had a strong preference for low-dimensional parametric models (Efron and Hastie, 2016). It is an advantage of
parametric models to express the data compactly in often few model parameters. This increases interpretability, requires fewer data samples,
has higher statistical power, and incurs lower computational load. Although the number of parameters in parametric models can be manually
increased by the user, only non-parametric models have the inherent ability to automatically scale their expressive capacity with increasing data
resources. Therefore, as the amount of neuroscience data continues to increase by leaps and bounds, parametric models might underfit the
available data, while non-parametric models might discover increasingly complex representations that potentially yield novel neuroscientific
insights.
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