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A B S T R A C T

Aligning images in a mid-space is a common approach to ensuring that deformable image registration is
symmetric – that it does not depend on the arbitrary ordering of the input images. The results are, however,
generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions
is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from
drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to
mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native
image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-
space. In addition, we show that the regularization term can be reformulated independently of the mid-space as
well. We derive a new symmetric cost function that only depends on the transformation morphing the images to
each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the
space of allowable deformations. We provide an implementation scheme for the proposed framework, and
validate it through diffeomorphic registration experiments on brain magnetic resonance images.

Introduction

The computation of a set of dense spatial correspondences among
images – a.k.a. image registration – is a central step in most population
and longitudinal imaging studies. Linear transformation is often not
sufficient to account for cross-subject anatomical variation or temporal
changes in an individual anatomy, thereby making deformable image
registration (Sotiras et al., 2013) a necessary part of most analysis
pipelines. The importance of registration accuracy in neuroimaging is
evident from the literature; for instance, inaccurate alignment has been
shown to lead to incorrect diagnosis (Reuter et al., 2014) and
ineffective radiotherapy (Castadot et al., 2008) of tumors, and the
inability to detect early effects of Alzheimer's disease (Cuingnet et al.,
2011; Fischl et al., 2009).

In deformable registration, the choice of the reference space in
which the images are compared affects the outcome, making the
resulting deformation field dependent on this choice. Choosing the

native space of one of the input images (say, the first image) as the
reference breaks the symmetry of pairwise registration, meaning that
reversing the order of the input images will produce different spatial
correspondences. Such an inverse-inconsistency has been shown to be
related to biased errors introduced into the estimation of Alzheimer’s
disease effects (Fox et al., 2011; Hua et al., 2011; Thompson and
Holland, 2011; Yushkevich et al., 2010), daily dose computation (Yang
et al., 2008) and auto re-contouring (Ye and Chen, 2009) in radiation
therapy, the quantification of lesion evolution in multiple sclerosis
(Cachier and Rey, 2000; Rey et al., 2002), and the measurement of
longitudinal changes (Reuter et al., 2012). Local volume changes in the
deformation field and discretization artifacts are two major contribu-
tors to registration asymmetry. Pairwise registration has been proposed
to be symmetrized by minimizing the average of two cost functions,
each using one input image as the reference space (Cachier and Rey,
2000; Christensen and Johnson, 2001; Tagare et al., 2009; Trouvé and
Younes, 2000), which unfortunately results in the non-uniform inte-
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gration of the image mismatch measure in the native spaces of the
input images (Aganj et al., 2015b).

In a different approach to achieve symmetry in pairwise registra-
tion, both images are deformed and compared in an abstract reference
space chosen to be “in between” the native spaces of the images, known
as the mid-space (Ashburner and Ridgway, 2013; Avants and Gee,
2004; Beg and Khan, 2007; Chen and Ye, 2010; Joshi et al., 2004;
Lorenzen et al., 2004; Lorenzen et al., 2006; Lorenzi et al., 2013;
Noblet et al., 2008, 2012; Škrinjar et al., 2008; Yang et al., 2008; Ye
and Chen, 2009). Since both images are treated equally, mid-space
registration is invariant with respect to the ordering of the images.
Such approaches essentially minimize their cost functions with respect
to two transformations that take the two input images to the mid-
space. However, without additional constraints, this increases the
degrees of freedom of the problem twofold, compared to the end result
of pairwise registration that is the one transformation taking one input
image to the other. Furthermore, if the images are compared in the
mid-space, the optimization algorithm is given the liberty to update the
mid-space so as to decrease the cost function without necessarily
changing the resulting image-to-image transformation. For example,
the algorithm can shrink the regions with mismatching image inten-
sities to make the deformed images look more similar in the mid-space,
without necessarily making them more similar in their native spaces.
To alleviate these issues, additional constraints are used to prevent the
mid-space from drifting away from the native spaces of the two images.
These anti-drift constraints, which are different from those regulariz-
ing the transformations, define the mid-space. They typically either
restrict the space of possible pair of transformations (resulting in fewer
degrees of freedom), or penalize those values of the two transforma-
tions that move the mid-space away from the native spaces. The most
common such constraints, proposed in the mid-space registration and
atlas construction literature, are restrictions on the two transforma-
tions to have opposite displacement fields (Aljabar et al., 2008; Bhatia
et al., 2004; Bouix et al., 2010; Fonov et al., 2011; Guimond et al.,
2000; Miller et al., 1997; Noblet et al., 2012; Studholme and Cardenas,
2004; Yang et al., 2008) or velocity fields (Ashburner and Ridgway,
2013; Grenander and Miller, 1998; Lorenzi et al., 2013). In large
deformation models, geodesic averaging of the deformations has also
been proposed, which preserves the desired properties of the transfor-
mations (Avants and Gee, 2004; Joshi et al., 2004; Lorenzen et al.,
2006). The anti-drift constraints, however, can have the side effect of
restricting the final image-to-image transformation, thereby causing
the exclusion of some legitimate results (see the section “Mid-space
based registration” for examples). Furthermore, the choice of these
constraints may affect the results by biasing the registration algorithm
towards favoring a particular set of transformations.

Unbiased atlas construction techniques can constitute mid-space
registration, as the images are deformed to the atlas space (Ashburner
and Ridgway, 2013; Hart et al., 2009; Joshi et al., 2004). In an atlas
construction approach to image registration, the desired output is the
deformation field, but not the auxiliary atlas. Consequently, one can
analytically solve for the atlas in the cost function, leading to an
implicit-atlas cost function that is minimized with respect to the image-
to-atlas transformations. To that end, it was initially proposed to
compare the deformed images to the atlas in the mid-space (Geng et al.,
2009; Joshi et al., 2004). A better-justified generative model, however,
progresses from the atlas to the images and compares the deformed
atlas to the images in the native image spaces (Allassonnière et al.,
2007; Ma et al., 2008; Sabuncu et al., 2009). Taking advantage of this
native-space atlas construction resolves the issue of susceptibility to
shrinkage-type problems, leading to a proper implicit-atlas cost func-
tion for mid-space registration (Ashburner and Ridgway, 2013).
Nevertheless, the registration still remains a function of two transfor-
mations taking the images to a mathematically defined mid-space.

In this work, we derive the key fact that implicit-atlas registration
has a data term that is inherently independent of the mid-space, and

only depends on the overall image-to-image transformation. This
implies that the individual image-to-atlas transformations are redun-
dant and unnecessary to keep, and that anti-drift constraints are
indeed not needed. We also show how to analytically solve the common
Tikhonov regularization terms with respect to one of the image-to-atlas
transformations. These lead us to a new cost function that, in contrast
to the existing mid-space approaches, can be minimized directly with
respect to the image-to-image transformation, with no anti-drift
constraints. The proposed cost function is general and can be used
with any deformation field parameterization, such as the displacement
and the velocity fields.

This article extends our preliminary conference version (Aganj
et al., 2015a). In particular, we propose a new regularization term in
addition to the data term (Section “Methods”), evaluate our method
more comprehensively on 3D brain magnetic resonance images
(Section “Results and discussion”), propose the extension of our
framework to group-wise deformable registration (Appendix A), and
provide further details on the derivations and the implementation of
the method (Appendix B and Appendix C).

Methods

Mid-space based registration

We begin with a brief overview of mid-space based pairwise
deformable registration. An extension of our framework to group-wise
registration is suggested in Appendix A. Let I I Ω, : →1 2 be the two
d-dimensional input images to be registered, where Ω⊆ d .1 The goal of
pairwise deformable registration is to compute the regular transforma-
tion T:Ω Ω→ that makes overlapping regions of I1 and I T∘2 locally
correspond to each other; a task that is often accomplished by
minimizing a cost function with respect to T . In one popular approach,
the image-to-image transformation T is parameterized as T T T= ∘2 1

−1,
where T1 and T2 deform I1 and I2 to a mid-space (see Section
“Introduction” for references). The deformed images may be compared
in the mid-space by minimizing a data term such as the common sum
of squared differences (SSD) term, ∫ I T y I T y y(( ∘ )( ) − ( ∘ )( )) d

Ω 1 1 2 2
2 (Geng

et al., 2009; Joshi et al., 2004).2 The mid-space data term is by
definition invariant with respect to the ordering of the images; i.e.,
swapping I1 and I2 will swap T1 and T2 in the produced set of
transformations.

With no additional constraints, the dimensionality of the mid-space
registration problem (solving for T1 and T2) is twice as large as the
standard asymmetric problem (solving for T ). Another drawback of this
approach is that the mid-space can drift arbitrarily far away from the
native spaces of the images due to large changes in T1 and T2, for
instance through combination with a transformation S, as T S∘1 and T S∘2 ,
which decreases the mid-space cost function without changing the final
T T S T S T S S T T T=( ∘ )∘( ∘ ) = ∘ ∘ ∘ = ∘2 1

−1
2

−1
1
−1

2 1
−1. An example of this phenom-

enon is the situation where the optimization algorithm updates T1 and
T2 in order to shrink the regions where the deformed images do not
match, resulting in a decrease in the mid-space cost function, without
necessarily changing the end result, T . To avoid this issue, additional
constraints are often employed to keep the mid-space “close” to the
native image spaces. Such constraints reduce the degrees of freedom
and to some extent prevent the mid-space drift, however, at the
expense of limiting our ability to model all possible transformations
T . Examples of such anti-drift constraints and their limitations are as
follows:

1 Multi-spectral images, I I Ω p, : → , > 1p
1 2 , can also be similarly incorporated in

this framework.
2 Throughout this article, we use the vectors x , y, and z to denote the space of I1, the

mid-space, and the space of I2, respectively.
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