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ABSTRACT

Convolutional networks used for computer vision represent candidate models for the computations performed
in mammalian visual systems. We use them as a detailed model of human brain activity during the viewing of
natural images by constructing predictive models based on their different layers and BOLD fMRI activations.
Analyzing the predictive performance across layers yields characteristic fingerprints for each visual brain region:
early visual areas are better described by lower level convolutional net layers and later visual areas by higher
level net layers, exhibiting a progression across ventral and dorsal streams. Our predictive model generalizes
beyond brain responses to natural images. We illustrate this on two experiments, namely retinotopy and face-
place oppositions, by synthesizing brain activity and performing classical brain mapping upon it. The synthesis
recovers the activations observed in the corresponding fMRI studies, showing that this deep encoding model

captures representations of brain function that are universal across experimental paradigms.

1. Introduction

Human and primate visual systems are highly performant in
recognizing objects and scenes, providing the basis of an excellent
understanding of the ambient 3D world. The visual cortex is hierarchi-
cally organized, which means that many functional modules have
feedforward and feedback connections compatible with a global order-
ing from lower levels to higher levels (Felleman and Van Essen, 1991).
The concept of visual “pathways” or “streams” (Mishkin and
Ungerleider, 1982; Goodale and Milner, 1992) is an established pattern
which identifies principal directions of information flow for specific
tasks, namely object representation in the “ventral stream” (from
occipital cortex into temporal cortex) and localization and spatial
computations in the “dorsal stream” (from occipital cortex into parietal
cortex). They share much processing in the occipital early visual areas
and less outside of them. The ventral visual stream encompasses visual
areas V1, V2, V3, V4 and several inferotemporal (IT) regions. Pure
feedforward pathways from V1 to IT (via other areas) exist, and
probably account for rapid object recognition (Thorpe et al., 1996;
Fabre-Thorpe et al., 2001).

Many parts of the human and primate visual cortices exhibit
retinotopic organization in so-called visual field maps: The image

presented to the retina is kept topographically intact in the next
processing steps on the cortical surface (Wandell et al., 2007). This
results in a one-to-one correspondence between a point on the retina
and the “centers of processing” for that point in the visual field maps,
such that neighboring points on the retina are processed nearby in the
visual field maps as well.

The seminal work of Hubel and Wiesel (1959) showed that cat and
other mammal V1 neurons selectively respond to edges with a certain
location and orientation in the visual field.

This discovery inspired a long line of research investigating the
nature of the computations performed in other visual regions and how
they are implemented. As an example, certain monkey V2 neurons
were found to react to combinations of orientations, such as corners
Anzai et al. (2007). Recently, it has been put forward that V2 may be an
efficient encoder of expected natural image statistics arising from
interactions of first-order edges Freeman et al. (2013). V4 is reported
to respond to more complex geometric shapes, color, and a large
number of other stimulus characteristics. Recently it has been posited
that V4 performs mid-level feature extraction towards the goal of
bottom-up and top-down figure-ground segmentation (Roe et al.,
2012). Further down the ventral pathway, neurons in the IT cortex
have been shown to be selective to parts of objects, objects and faces
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(Desimone et al., 1984; Logothetis et al., 1995). Taken together, these
findings indicate an increasing trend in abstractness of the representa-
tions formed along the ventral stream.

FMRI has been used very successfully to identify and delineate the
aforementioned visual field maps as well as brain regions that seem to
specialize in certain tasks in the sense that their responses are
particularly strong for specific types of stimuli. This type of result has
typically been derived using statistical contrast maps opposing various
visual stimuli. The contributions (Kanwisher et al., 1997; Downing
et al.,, 2001; Epstein and Kanwisher, 1998), for instance, use this
technique to localize specialized regions: areas for faces, body parts,
places. Finer models, known as “encoding” models or forward model-
ing techniques (Naselaris et al., 2011), have been used to study the
brain response to stimuli in greater detail (Kay et al., 2008; Naselaris
et al., 2009; Nishimoto et al., 2011). This setting usually relies on richer
models, going beyond binary contrasts, towards a more open descrip-
tion of the link between stimulus and activation. The validity of the
corresponding stimulus representation is then established by testing
how well it predicts brain activity, often with a linear model, by using
cross-validation on held-out data.

For example, in Kay et al. (2008), almost 2000 naturalistic images
were used as stimuli and the BOLD signal responses were then fit using
a predictive model based on Gabor filterbank responses of the images
shown. Primary visual cortex was very well modeled, but also extra-
striate areas such as visual area V4 were well explained by the Gabor
filter model.

In this contribution, we make use of the hierarchical organization of
modern convolutional networks for object recognition to model human
brain activity. We create encoding models (Naselaris et al., 2011) from
the processing layers of the convolutional network OverFeat (Sermanet
et al., 2013), which each represent feature maps at different levels of
complexity. We train a linear predictive model of brain activity for each
of the layers on the datasets of Kay et al. (2008) and Huth et al. (2012)
and compare their ability to describe brain activity for every voxel by
evaluating the predictive score on held-out data.

The scores of the different layers outline continuous progression
profiles that are distinct in each visual area. We demonstrate that the
model captures the cognitive architecture of the visual system by
investigating its generalization capacity to vision-neuroscience para-
digms beyond natural-image viewing. To do so we use stimuli unseen
by our model, of which some come from totally different experiments
and follow vastly different pixel statistics. Our predictive model, which
can be seen as data-driven forward model to generate fMRI activations,
is used to synthesize putative brain activation maps corresponding to
these novel stimuli. This methodology enables our model to reproduce
classical experiments in the extensive literature of paradigm-driven
fMRI research. We consider two of these experiments: retinotopic
mapping, i.e. the capturing of spatial information to sufficient accuracy
for the generation of visual field maps, and a faces/places contrast to
capture high-level information.

Previous work has used convolutional networks with fMRI data
(Giiclii and van Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014).
However it focused on specific experiments. Showing that results
generalize across datasets and paradigms brings an important novel
step to the use of convolutional networks for the study of human vision.
First, we show the validity of the approach on a new dataset with videos
rather than still images. Second, we synthesize plausible brain activity
to new images from completely different experiments that rely on
hand-crafted, well controlled stimuli. These results demonstrate that
convolutional networks capture universal representations of the stimuli
that linearly map to and separate cognitive processes, such that this
link generalizes to unseen experimental paradigms.

2. Biological relevance of multi-layer vision models

The Gabor filter pyramid employed in the original work of Kay et al.
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(2008) can be seen as an instance of a biologically inspired computer
vision model. Indeed, all of modern computer vision, in its roots, has
been inspired by biological vision. The basic filter extraction techniques
at the beginning of the most successful computer vision pipelines are
based on local image gradients or laplacians (Canny, 1986; Simoncelli
and Freeman, 1995), which are operations that have been found in V1
as edge detection and in the LGN as center-surround features. The
HMAX model was constructed to incorporate the idea of hierarchies of
layers (Riesenhuber and Poggio, 1999). HMAX models are layered
architectures that typically begin with edge detection using oriented
filters, followed by a spatial and across-channel max-pooling.
Subsequent layers implement other forms of localized (convolutional)
processing, such as linear template matching. Using a supervised
classifier at the end of this processing, it reached near state-of-the-art
object recognition capacities in Serre et al. (2007).

The natural question to ask in the context of predictive modeling of
BOLD fMRI in visual areas is “What comes after the Gabor filter
pyramid?”. The scattering transform model (Mallat, 2012; Bruna and
Mallat, 2013) provided only one supplementary layer of which one
cannot state much more than the existence of brain voxels which it
models well (Eickenberg et al., 2013). The scattering transform is a
cascade of complex wavelets and complex moduli, which has good
mathematical stability properties and yields rich representations. The
layers C1 and C2 of HMAX as used in Serre et al. (2007) were obtained
using random templates taken from the preceding pooling layer
activation. They were not geared optimally towards object recognition.
This made the difference between layers difficult to evaluate (see e.g.
Kriegeskorte et al., 2008). Although quite similar in architecture, deep
artificial neural networks are of much greater interest here. Indeed,
they optimize intermediate layers towards increasing overall perfor-
mance in object detection, which is known to be performed also in IT
cortex in humans and primates (see Cadieu et al. (2014) and
Kriegeskorte et al. (2008)).

Artificial neural networks for computer vision attain state-of-the-art
results with optimized feature hierarchies in a layered architecture
composed of stacked layers with units that compute a linear transfor-
mation of the activations of previous layers followed by a simple
pointwise nonlinearity. For instance, the first linear transformations
are typically similar to Gabor filters and the corresponding non-
linearities perform edge detection. Recent breakthroughs in the field
of artificial neural networks have led to a series of unprecedented
improvements in a variety of tasks, all achieved with the same family of
architectures. Notably in domains previously considered to be the
strongholds of human superiority over machines, such as object and
speech recognition, these algorithms have gained ground, and, under
certain metrics, have surpassed human performance (LeCun et al.,
2015).

Bridging to neuroscience, Cadieu et al. (2014) and Yamins et al.
(2014), using electrophysiological data, have shown that IT neuron
activity is predictive of object category in a similar way as the
penultimate layer of a deep convolutional network which was not
trained on the stimuli. Even more striking: a deep convolutional
network can predict the activity of IT neurons much better than either
lower-level computer vision models or object category predictors.
Furthermore, deep convolutional networks trained on object categories
and linked to neural activity with simple linear models predict this
neural activity as well as the same network trained directly on neural
data, suggesting that the encoding of object categories in the network is
a good proxy for the representation of neural activity. These two works
inspired us to investigate the link between computer-vision convolu-
tional networks and brain activity with fMRI in order to obtain a global
view of the system. Indeed, fMRI is much more noisy and indirect than
electrophysiological data, but it brings a wide coverage of the visual
system.

Inspection of the first layer of a convolutional net reveals that it is
composed of filters strongly resembling Gabor filters, as well as color
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