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ARTICLE INFO ABSTRACT

The human brain can be modeled as multiple interrelated shapes (or a multishape), each for characterizing one
aspect of the brain, such as the cortex and white matter pathways. Predicting the developing multishape is a very
challenging task due to the contrasting nature of the developmental trajectories of the constituent shapes:
smooth for the cortical surface and non-smooth for white matter tracts due to changes such as bifurcation. We
recently addressed this problem and proposed an approach for predicting the multishape developmental
spatiotemporal trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic,
and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further improve the
prediction of multishape evolution. First, for a more accurate cortical surface prediction, instead of simply
relying on one neonatal atlas to guide the prediction of the multishape, we propose to use multiple neonatal
atlases to build a spatially heterogeneous atlas using the multidirectional varifold representation. This
individualizes the atlas by locally maximizing its similarity to the testing baseline cortical shape for each
cortical region, thereby better representing the baseline testing cortical surface, which founds the multishape
prediction process. Second, for temporally consistent fiber prediction, we propose to reliably estimate
spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the variability and
richness of the temporal development of fibers. Experimental results confirm that the proposed variants
significantly improve the prediction performance of our original multishape prediction framework for both
cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. Our pioneering model will pave the way for
learning how to predict the evolution of anatomical shapes with abnormal changes. Ultimately, devising
accurate shape evolution prediction models that can help quantify and predict the severity of a brain disorder as
it progresses will be of great aid in individualized treatment planning.
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Introduction

Multimodal MR imaging offers unprecedented insights into differ-
ent facets of brain development. With the increasing availability of
longitudinal postnatal brain imaging data, one can now track dramatic
spatiotemporal changes in both white matter (Dubois et al., 2014) and
gray matter (Gilmore et al., 2007) during the first years of postnatal
development. The trajectories of these changes are often characterized
using spatiotemporal shape models. However, great challenges arise
when the shapes of different structures exhibit contrasting develop-
mental behaviors. For instance, the cortical surface can be modeled as a
shape that undergoes a diffeomorphic (i.e., smooth and invertible)
evolution, whereas white matter pathways undergo a non-diffeo-
morphic evolution as they elongate and bifurcate with growth due to

active myelination (Deoni et al., 2011).

Devising a robust and accurate framework for predicting, based on
neonatal data, the development of multiple interlinked shapes, such as
cortical surfaces and white matter tracts, is of great clinical interest.
This allows identification of aberrant developmental patterns in case-
control settings. There is a growing body of evidence in the neu-
roscience literature indicating that the shapes of structures in the
developing brain can be used as biomarkers for many neurodevelop-
mental disorders. For instance, hemispheric shape asymmetries ap-
peared to be influenced by sexually dimorphic factors or by schizo-
phrenia pathophysiology (Narr et al., 2007). In addition, the morphol-
ogy of cortical gyri and sulci at birth is found to be predictive of the
pathological functioning in certain developmental and neuropsychia-
tric disorders (Dubois et al., 2008). This motivates designing shape-
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based developmental prediction models to allow early diagnosis of
neurodeveopmental and psychiatric illnesses that are rooted in early
infancy (Lyall et al., 2014) as well as neurodevelopmental impairments
in preterm infants (Kapellou et al., 2006).

Existing approaches to brain growth prediction are mainly focused
on predicting the evolution of low-dimensional scalar data. For
instance, Sadeghi et al. used nonlinear mixed-effects modeling to infer
individual developmental trajectories for the radial diffusivity of the
posterior thalamic radiation (Sadeghi et al., 2013, 2014; Gerig et al.,
2016). Extension of methods as such to high-dimensional data invol-
ving multiple shapes poses significant challenges, as pointed out in
Gerig et al. (2016). Fishbaugh et al. (2013) proposed a geodesic shape
regression model rooted in the theory of currents to predict back in
time subcortical shapes at 6 months from shapes at between 9 and 24
months of age. This model was further extended to integrate image
data to evolve image and shape following the slope of the initial
momenta vectors (Fishbaugh et al., 2014). However, for image-shape
prediction, this model requires measurements at least at two time
points. Even more advanced approaches still required more than one
time point for prediction such as the works of Nie et al. (2010, 2012)
where a mechanical cortical growth model was devised to simulate the
dynamics of cortical folding from longitudinal MRI data in the first
postnatal year.

To address these problems, we introduced in Rekik et al.
(2015a,b,c) learning-based frameworks for predicting subject-specific
spatiotemporal growth of the cortical surface solely from neonatal data
acquired at a single time point. Although promising, these frameworks
are focused only on predicting one shape (i.e., the cortical surface) and
ignore other important shapes such as the white matter tracts. To the
best of our knowledge, our work introduced in Rekik et al. (2016b) is
the first attempt to address this limitation by multishape modeling of
both cortical surfaces derived from structural MRI and the white
matter fibers derived from diffusion MRI. Building on Rekik et al.
(2015b,a,c), the proposed framework (Rekik et al., 2016a,b) employs a
geodesic multidirectional varifold shape regression model to estimate a
time-varying deformation velocity field that flows shapes diffeomor-
phically. In addition, the proposed framework harnesses fiber-to-
surface connectivity for non-diffeomorphic modeling of the growth of
white matter tracts. Specifically, our framework includes training and
testing stages. In the training stage, for each infant, we learn from the
training subjects (1) the geometric features of the cortical surface, (2)
the dynamic features (i.e., evolution trajectories) of the baseline
cortical surface, and (3) the fiber-to-surface connectivity features. In
the testing stage, for the multishape of a testing neonatal subject, we
select the best features that simultaneously predict the triangular faces
on the cortical surface mesh and all the fibers traversing them at the 3,
6 and 9 months time points. Our framework affords several advantages.
First, it does not require the computationally expensive process of
registering thousands of fibers to establish tract-to-tract correspon-
dence for prediction, which is prohibitive using a conventional
diffeomorphic multishape registration setting as in Durrleman et al.
(2014). Second, it guides fiber prediction using the diffeomorphic
cortical surface deformation trajectory, which is less complex and can
be estimated more accurately than that of fiber growth trajectory. More
importantly, this enables us to account for fiber connectivity changes
and the occurrence of new fibers, which can cause topological changes
in the connections.

However, this first work on multishape prediction had a number of
limitations, which we aim to address in this paper. First, our early
approaches (Rekik et al., 2015b,a, 2016b) use a single-atlas approach
where shape information from a single neonatal subject in the training
dataset was used to obtain the shape predictions, failing to take into
account possible spatial and topographic variability. To address this,
we propose to use multiple atlases to estimate a spatially heterogenous
atlas that best approximates the cortical shape of a testing subject. For
this purpose, we use the multidirectional varifold shape similarity
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Table 1
Major mathematical notations used in this paper.

Mathematical notation Definition

x 3D position in R3

& space of currents and varifolds

w testing space

® testing vector field in W

Kw shape Gaussian kernel of RKHS

Ky deformation Gaussian kernel

ow decay rate of the Gaussian kernel Ky~

oy decay rate of the Gaussian kernel Ky

ke linear kernel for varifold definition

n oriented unit normal vector in R3

w nonoriented unit normal vector in R3

be diffeomorphism (invertible and smooth mapping) at
time t

vy the deformation velocity field at time ¢

Pr initial deformation momentum in R located at the
control point ¢z

S; observed surface at timepoint ¢;

S reconstructed virtual shape

s predicted surface, i > 0

% the dynamic cloud

A; atlas at timepoint t;

K principal curvature direction

F; ensemble of fibers

B virtual ensemble of fibers

B predicted fibers, i > 0

M; multishape (S;, F;) observed at timepoint t;

75 (F) projecting fibers F onto a surface S

Fa the two extremeties of fiber f; k € {1, 2}

& a triangular face (mesh)

u a vertex in R3

1w a vertex belonging to a labeled region [

F&) set of fibers that hit the face &

d(, &) similarity measure between two faces & and xi’ in fiber
properties

€ radius of the local neighborhood search

Tu low-rank tensor of size Ny X N, x N; defined at vertex u

&y masking tensor of size Ny x N; X N; defined at vertex u

r multilinear rank of dimension 1x3

Ny number of faces in k-ring neighborhood centered at
vertex u

N, number of acquisition timepoints (including the first
observation)

Ng number of all training subjects + the new testing
subject

M, smooth manifold of tensors

Py linear tensor projection onto 2

metric introduced in Rekik et al. (2015¢, 2016a). Second, in our work
(Rekik et al., 2016b), the fiber-surface relationship was determined
based only on the neonatal time point, hence does not enforce temporal
consistency. To address this, we propose to estimate spatiotemporal
connectivity features from neonatal connectivity features using low-
rank tensor completion (Kressner et al., 2014) to further refine the fiber
selection process. Experimental results indicate that the two strategies
mentioned above significantly improve the prediction accuracy in
comparison with our previous method (Rekik et al., 2016b).

Fundamental works on longitudinal multishape prediction
from a single measurement

In this section, we provide a comprehensive overview of the first
works related to learning-based shape prediction for the developing
infant brain. These present the building blocks of the enhanced
multishape prediction model devised in this paper. For easy reference
and to enhance the readability, we summarized the major mathema-
tical notations in Table 1.
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