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A B S T R A C T

Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI)
allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have
assumed stationary interactions between brain regions, without considering the dynamic aspects of network
organization. Only recently has the latter received increased attention, predominantly in human studies.
Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the
possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or
genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using
the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-
window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex
organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS
displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They
fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as
shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed
to make a major contribution to information integration and processing in the healthy and diseased brain.

Introduction

Functional connectivity (FC) is a measure of statistical inter-
dependence of the activity traces of two brain regions, providing
insight into interactions between brain areas and how they jointly
support information processing (Power et al., 2014). FC analysis has
gained in importance over the past decade, shedding light on large-
scale brain organization by identifying a set of autonomous network
modules such as the default mode network (DMN), and contributing to
improved understanding of brain function and the changes underlying
several brain disorders (Greicius, 2008). While information processing
by the brain is a highly dynamic process requiring exquisitely orche-
strated regional interactions, the majority of FC studies on spontaneous
brain activity as assessed by functional magnetic resonance imaging
(fMRI) assume stationarity, i.e. constant interactions throughout the
duration of a resting-state scanning session. However, rapid changes in
EEG microstate, i.e. coherent activation at a sub-second time scale

within global functional brain networks, have been described (Van de
Ville et al., 2010). Dynamic functional connectivity (dFC) aims to
capture aspects of time-varying coupling patterns between regions and
therefore to reveal the dynamic features of network organization.
Interestingly, dynamic EEG microstates have been shown to correlate
significantly with activity in fMRI resting-state networks despite the
pronounced temporal filtering imposed by the hemodynamic response
function (Van de Ville et al., 2010).

A wide range of approaches has been used to analyze the dynamic
characteristics of the fMRI signal (Calhoun et al., 2014). Changes in FC
across time can be estimated by applying a so-called sliding-window
approach, in which the resting-state brain signals are subdivided into
time-shifted segments of short duration, each of which then undergoes
correlation analysis. For studies considering more than a few pairwise
interactions or aiming at group-level analysis, dimensionality reduction
is commonly achieved by applying multivariate techniques to the large
set of FC time courses. Allen and colleagues proposed the application of
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k-means clustering to identify dynamic functional states (dFS) (Allen
et al., 2014), while previous work by Leonardi et al. introduced
eigenconnectivities by the application of principal component analysis
(PCA) (Leonardi et al., 2013), and dictionary learning (Leonardi et al.,
2014).

The dynamic nature of FC raises questions concerning the neuronal
basis underlying this phenomenon, both in the normal and diseased
brain. It has been suggested that dynamic FC patterns in awake
humans at rest might be driven by both conscious and unconscious
brain processes, which may vary across subjects (Hutchison et al.,
2013), rendering the elucidation of mechanistic aspects difficult.
Analogous studies in anesthetized animals serve as a powerful com-
plementary approach to gain mechanistic insight. Hutchison et al.
demonstrated the non-stationary behaviour of FC in anesthetized
monkeys, proving the existence of dFS in the unconscious brain and
in the absence of potential confounds due to head motion (Hutchison
et al., 2013). Analysis of the dynamic properties of FC in anesthetized
rats revealed similarities with dFC patterns in awake humans and
monkeys (Majeed et al., 2011), and furthermore demonstrated a
correlation between dFS derived from resting-state fMRI and the
dynamics of electrophysiological recordings (Thompson et al., 2013).
Studies in mice offer additional opportunities to examine factors
regulating dFC aspects. Optogenetics (Lee et al., 2010) and pharma-
cological interventions (Razoux et al., 2013) may be used to modulate
specific neuronal populations in order to analyze their involvement in
wide-range neural networks and in dynamic network interactions. In
addition, models of human pathology might indicate disease-specific
alterations in dFC, which could be relevant from a mechanistic point of
view or serve as early disease indicators (Grandjean et al., 2014b).

We have evaluated whether dFC analysis of anesthetized mice
resting-state fMRI data enables the identification of dFS that is
sufficiently reproducible to study potential alterations due to changes
in physiological conditions or in response to pathological stress. The
results are organized into four sections: i) quality control with regard to
reproducibility of brain parcellation and stationary FC analysis, ii)
estimation of reference dFS based on rs-fMRI data of healthy mice, iii)
a test of dFC on surrogate data, as well as of the reproducibility and
generalization of dFS in an independent dataset, and iv) analysis of the
sensitivity of the approach in identifying dFC changes induced by
pathology (murine model of chronic psychosocial stress) or alterations
in physiological state (prolonged anaesthesia).

Stationary FC analysis revealed a segregated organization into
distinct modules such as the sensory-motor cortical networks, sub-
cortical networks, and DMN. To establish meaningful group-level
components of fluctuations of FC, we applied dictionary learning to
the dFC time courses obtained with sliding-window correlation. This
method allows for generalization upon conventional subspace methods
such as PCA and ICA by adding constraints such as temporal sparsity,
bounded values, and positivity (Leonardi et al., 2014). The positivity
constraint allows for discrimination of increases and decreases in
connectivity, so that these are not forced to have the same temporal
occurrence for the whole duration of data acquisition. Furthermore,
positivity enables the capturing of strongly anti-correlated patterns as
two different building blocks with anti-correlated time courses.
Inclusion of temporal sparsity can be justified in view of a recent
report providing evidence that the various networks are acting
together, but not the whole repertoire at once (Karahanoglu and Van
De Ville, 2015). This indicates that connectivity states exist economic-
ally, with only a subset being active together at a given time point.

The dFC analysis revealed dynamic interactions between and within
the modules derived by stationary FC analysis. Furthermore, we show
that the patterns identified by dictionary learning could be reproduced
in an independent dataset using a different preprocessing pipeline, and
that they are largely independent of parameter choices throughout the
analytical procedure. Finally, we demonstrate that dFS might consti-
tute sensitive indicators of: abnormal processing, as illustrated in a

mouse model of psychosocial stress-induced depression-like brain and
behaviour (Azzinnari et al., 2014; Grandjean et al., 2016a); and
physiological adaptations, as observed during prolonged anaesthesia.
The data show that dFC analysis identifies rich information on
functional brain organization that remains hidden under conventional
stationary FC approaches. Overall, we demonstrate that dFC analysis
constitutes a number of promising research avenues with practical
guidelines that can lead to better and more sensitive imaging-based
biomarkers.

Materials and methods

Animals and preparation

All experiments were conducted following the Swiss federal ordi-
nance for animal experimentation, and were licensed by the Zürich
cantonal veterinary office. A total of 92 C57BL/6 mice bred in-house,
14 females and 78 males aged 8–12 weeks, were studied. Animals were
kept in standard housing, with 12 h day/night cycle, and food and
water provided ad libitum. Anesthesia was induced with isoflurane
3.5% in 1:4 O2 to air mix. Mice were endotracheally intubated, and
positioned onto an animal MRI-compatible support, equipped with a
hot water-flowing bed, and ear-bars to maintain the animal stable.
Mice were ventilated mechanically with a small animal ventilator
(CWE, Ardmore, USA) at 80 breaths per minute, with 1.8 ml/min
flow. The tail vein was cannulated to administer anaesthetic and
muscle relaxant. A bolus injection of medetomidine 0.05 mg/kg and
pancuronium bromide 0.2 mg/kg was administered, and isoflurane was
reduced to 1.5%. After 5 min, an infusion of medetomidine 0.1 mg/kg/
h and pancuronium bromide 0.4 mg/kg/h was administered, and
isoflurane was further reduced to 0.5%. The temperature was mon-
itored using a rectal thermometer probe, and maintained at 36.5 ±
0.5 °C throughout measurement. Physiological parameters during
anaesthesia were acquired in 5 mice outside the magnet using a mouse
pulse oximeter placed on the left hind paw (MouseOX Plus, STARR Life
Sciences). During physiological testing, pancuronium was omitted to
allow testing of the reflex response to forelimb pinches.

Dataset description

Functional imaging data were acquired in three separate runs, and
then grouped into different datasets for the analysis. Run 1: 14 female
mice imaged at baseline (ME1 dataset). Run 2: 25 male mice imaged
first at baseline, during which two fMRI scans separated by 30 min
were acquired. The animals then underwent a chronic psychosocial
stress (CPS, see below) paradigm and were imaged post-treatment.
Data from this run were included in two datasets: ME2 consisting of
only the baseline session and CPS2 including both baseline and post-
treatment session. Run 3: 53 male mice imaged at baseline followed by
CPS paradigm and imaged post-treatment. Data from this run, for
which stationary FC analysis has been reported previously (Grandjean
et al., 2016a), were divided into the FIX dataset consisting of only the
baseline session and CPS1 dataset including baseline and post-CPS
session. These datasets were further grouped as ME(all), encompassing
datasets processed with mutli-echo pipeline (ME1 and ME2), and
CPS(all), encompassing all datasets from the CPS paradigm (CPS1 and
CPS2). Datasets and respective acquisition procedures are detailed in
Table 1.

Chronic psychosocial stress

Chronic psychosocial stress (CPS) was conducted as described pre-
viously (Azzinnari et al., 2014; Fuertig et al., 2016). Briefly, each C57BL/6
CPS mouse was placed singly in the home cage of an aggressive CD-1
mouse, separated by a transparent, perforated divider. Across 15 days, the
CPS mouse was placed daily in the same compartment as the CD-1 mouse
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