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ARTICLE INFO ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) gives us a unique insight into the processes of the brain, and
opens up for analyzing the functional activation patterns of the underlying sources. Task-inferred supervised
FMRI . learning with restrictive assumptions in the regression set-up, restricts the exploratory nature of the analysis.
Source separation Fully unsupervised independent component analysis (ICA) algorithms, on the other hand, can struggle to detect
Independent component analysis . . . . . . . .
Convolutive mixing clear classifiable gomponents on smgle-subject d‘ata. We attribute this shortcommg to 1na(?equa}te m(?dellr.lg of
Bayesian inference the fMRI source signals by failing to incorporate its temporal nature. fMRI source signals, biological stimuli and

non-stimuli-related artifacts are all smooth over a time-scale compatible with the sampling time (TR). We
therefore propose Gaussian process ICA (GPICA), which facilitates temporal dependency by the use of Gaussian
process source priors.

On two fMRI data sets with different sampling frequency, we show that the GPICA-inferred temporal
components and associated spatial maps allow for a more definite interpretation than standard temporal ICA
methods. The temporal structures of the sources are controlled by the covariance of the Gaussian process,
specified by a kernel function with an interpretable and controllable temporal length scale parameter. We
propose a hierarchical model specification, considering both instantaneous and convolutive mixing, and we
infer source spatial maps, temporal patterns and temporal length scale parameters by Markov Chain Monte
Carlo. A companion implementation made as a plug-in for SPM can be downloaded from https://github.com/

Keywords:
Gaussian processes

dittehald/GPICA.

Introduction

The hemodynamic response (HDR) of the brain and the emerged
blood-oxygen-level-dependent (BOLD) contrast image captured by
functional magnetic resonance imaging (fMRI) is a window into many
aspects of the brain. Independent component analysis (ICA) is one of
the most common ways to extract signal constituents from fMRI data.
These sub-parts of the fMRI signal arise from different independent
processes related to the stimuli, non-stimuli effects (such as heart beat)
and artifacts (such as head movement), (Duann et al., 2002; McKeown
et al., 2003). Proper source separation will thus allow both identifica-
tion of stimuli-related signals and artifact removal. These independent
processes are expected to vary smoothly over time, on a time scale that
is often comparable with the fMRI acquisition frequency. It therefore
seems obvious to use this information in the modeling of the sources.
This is, however, computationally demanding, and ICA models based
on (non-Gaussian) independent identically distributed (i.i.d.) sources
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are the most commonly used in practice, e.g, Infomax and FastICA
(Bell and Sejnowski, 1995; Hyvérinen, 1999).

The fMRI data, X, is assumed to be a linear combination of stimuli,
non-stimuli and artifact signals plus additive noise. Each signal can be
thought of as consisting of a source, Z, and its dispersion in space, W,
by X = WZ + €, with ¢ being the noise contribution. The estimation of
W and Z is identifiable (up to permutation and sign symmetries) for
some choices of prior distributions on the model parameters (Kagan
et al., 1973; Henao and Winther, 2011). The non-identifiable case is
i.i.d. Gaussian priors on Z and W, corresponding to probabilistic PCA
and standard factor analysis. In blind source separation, ICA is the
most widely used generative model to solve the problem, and the most
notably identifiable model specification is based upon non-Gaussian
ii.d. priors or temporally correlated Gaussian priors. The non-
Gaussian i.i.d. priors are either used explicitly as in InfoMax (Bell
and Sejnowski, 1995)', or implicitly as in FastICA (Hyvirinen, 1999).
The Molgedey-Schuster algorithm (icaMS) (Molgedey and Schuster,

1 MacKay (2003) provides an alternative derivation of Infomax using a Bayesian formulation similar in spirit to the model specification proposed here.
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1994) is a notable example of a model that implicitly uses a temporally
correlated source prior.

In this paper, we work with temporally smooth sources. We
accomplish this by modeling each source as a temporal Gaussian
process. Gaussian processes (GP) are a generalization of multivariate
Gaussian distributions into a stochastic process described by a mean
function and a covariance (kernel) function (for a introduction to
Gaussian processes, see, e.g., Rasmussen and Williams (2006)). In
Gaussian processes, the covariance function's shape and parameters
determine the length-scales on which the signal is correlated.
Consequently, in our algorithm, Gaussian Process based ICA
(GPICA?), different sources will differ both in terms of their spatial
and temporal patterns, as in standard ICA, and additionally, by the
length-scale of their characteristic temporal correlation. As a part of the
algorithm we infer W and Z and for each source the length-scale
parameter of its kernel function.

A prerequisite for this model to make sense is that the sampling
time (TR, the inverse of the sample frequency) is on the same length-
scale as temporal correlation in the signal components we would like to
recover. Typically, the fMRI acquisition frequency is around 0.5-1 Hz
(that is TR # 1-2 secs.). We consider two data sets with different
sampling rates: a fast acquisition visual paradigm dataset with
TR = 1/3 secs. and a motor paradigm dataset with a more standard
TR =2.49 sec. In both cases, we show that GPICA can recover
interpretable time-scale signals, compatible with the TR used.

As long as there is a different GP for a each source (i.e., different
length-scale), Kagan et al. (1973) theorem (Theorem 10.4.1) is fulfilled
and will therefore lead to identifiable sources. And even if sources' GPs
would be too close, a non-Gaussian prior on W can potentially drive the
model to identifiable sources. The Gaussian process has the property
that it reverts back to independent Gaussian variables (that is
probabilistic PCA), if the temporal length-scale parameter in the
covariance function is much shorter than TR. In that limit the kernel
matrix approaches the identity matrix. We can in principle still get
identifiable source recovery in this limit as long as the prior over the W
matrix has a non-Gaussian distribution. We therefore use i.i.d.
Student's t-distributions on the elements of W. This choice has the
added benefit of promoting a more discriminative W because, relative
to the Gaussian, Student's t has more shrinkage (heavier tails) towards
zero for non-important parameters and less for important ones.

Gaussian processes are widely applied in probabilistic regression
problems (Rasmussen and Williams, 2006). GPs have previously been
employed in factor analysis (FA), where Yu et al. (2009) uses time-
point FA tied together by a GP in order to perform dimension reduction
and smoothing simultaneously. Luttinen and Ilin (2009) developed a
GPFA algorithm for reconstructing missing data, with GPs attached to
both factors and loadings. They use a variational Bayesian framework
for learning the model, and factorize the posterior approximation
either in time or space to reduce the computational complexity.
Luttinen and Ilin (2009) are closely related to the GP work by
Schmidt and Laurberg (2008), Schmidt (2009). Schmidt and
Laurberg (2008) focuses on probabilistic non-negative matrix factor-
ization (NMF), and models factor smoothness with a GP. In the follow-
up work, Schmidt (2009) uses non-linear mapped GPs (Warped GPs
similar to Snelson et al. (2004)) to perform function factorization.
Bayesian inference is performed with Hamiltonian Markov Chain
Monte Carlo. Preliminary work on source separation with GP sources
has also been formulated by Park and Choi (2007), Park and Choi
(2008). They use mutual information minimization (Park and Choi,
2007) or gradient-based optimization (Park and Choi, 2008) of the log-
pseudo-likelihood to infer the mixing matrix. Their proposed model is
closely related to our GPICA model. Our novel contributions are the

2 Not to be confused with geometric post nonlinear ICA (gpICA) from Nguyen et al.
(2007).
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hierarchical specification of the model, Markov Chain Monte Carlo
(MCMC)-based inference, application to fMRI datasets and a compa-
nion plug-in for SPM to make the algorithm available for other
researchers. The algorithmic workflow is illustrated in Fig. 1, and can
be used as a point of reference through the model specifications
together with the table of notation in Table A.1. We also propose a
convolutive mixing matrix extension of the algorithm. This extension is
related to the work by Olsson and Hansen (2006). The main difference
in the model specification is that the temporal model is a linear state
space model (AR model), that may be seen as a different parameter-
ization of the GP temporal covariance (Hartikainen et al., 2010).
Furthermore, the model as originally proposed is not hierarchical
and inference is carried out with expectation-maximization (EM).

The proposed algorithm has relatively high complexity, mainly due
to the number of MCMC samples needed to get sufficiently accurate
estimates. However, our empirical results show that this is sometimes a
price worth paying. For minimally pre-processed data, we can recover
stimuli-related sources, even in cases where the amplitudes of these
sources are only a small fraction of the total variance in the data (low
signal-to-noise ratio regime). The careful time-consuming modeling
and inference in GPICA are, without doubt, contributing factors to
achieving meaningful sources.

The remainder of this paper is organized as follows: In Section 2, we
introduce the GP-based ICA model with GP sources and both instan-
taneous and convolutive mixing. Appendix B gives the details of the
Gibbs sampling-based inference scheme. In Section 3, we give a brief
description of the two fMRI data sets used in Section 4. In Section 4.5
we describe an implementation as a plug-in to SPM. In Section 5 we
interpret the empirical results. In Section 6 we provide an outlook and
perspectives for the model.

Independent component analysis with Gaussian Process
priors

In this Section, we will describe the independent component
analysis (ICA) model with Gaussian process-based sources. We will
specify hierarchical Bayesian priors for model parameters and describe
a Markov Chain Monte Carlo (MCMC) framework for inference. We
consider both instantaneous and convolutive versions of the mixing
model.

Instantaneous independent component analysis

The basic ICA model is defined as

P
Xj= ) WpZpy + €
p=1

1
@

where X;; is the data matrix with subscripts representing voxel and
time sample, respectively. Each row in Z represents the time course of
one source and W is the component map, or mixing matrix. P is the
number of independent components in which the data is decomposed.
P is much smaller than the number of voxels D and the number of time
points N. e, the spatial-temporal noise contribution, is assumed to be
i.i.d. Gaussian with zero mean and spatially varying noise variance ¥;;.
We can thus write the likelihood for the jth time slice as

X=WZ+¢

P(lew, Zj» T) = N(XJ|WZ/, T) (3)
and the joint distribution of the whole data set is

N
PXIW,Z, %)= [[PGy|W. 3. ¥)

j=1 C)

where ¥ is diagonal with elements ¥;.
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