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A B S T R A C T

As the EEG inverse problem does not have a unique solution, the sources reconstructed from EEG and their
connectivity properties depend on forward and inverse modeling parameters such as the choice of an anatomical
template and electrical model, prior assumptions on the sources, and further implementational details. In order
to use source connectivity analysis as a reliable research tool, there is a need for stability across a wider range of
standard estimation routines. Using resting state EEG recordings of N=65 participants acquired within two
studies, we present the first comprehensive assessment of the consistency of EEG source localization and
functional/effective connectivity metrics across two anatomical templates (ICBM152 and Colin27), three
electrical models (BEM, FEM and spherical harmonics expansions), three inverse methods (WMNE, eLORETA
and LCMV), and three software implementations (Brainstorm, Fieldtrip and our own toolbox). Source
localizations were found to be more stable across reconstruction pipelines than subsequent estimations of
functional connectivity, while effective connectivity estimates where the least consistent. All results were
relatively unaffected by the choice of the electrical head model, while the choice of the inverse method and
source imaging package induced a considerable variability. In particular, a relatively strong difference was found
between LCMV beamformer solutions on one hand and eLORETA/WMNE distributed inverse solutions on the
other hand. We also observed a gradual decrease of consistency when results are compared between studies,
within individual participants, and between individual participants. In order to provide reliable findings in the
face of the observed variability, additional simulations involving interacting brain sources are required.
Meanwhile, we encourage verification of the obtained results using more than one source imaging procedure.

Introduction

Two major methodological challenges in noninvasive neuroimaging
concern the determination of task-specific cortical areas and the
determination of their interactions from functional data.

Functional magnetic resonance imaging (fMRI) measures changes in
blood flow induced by neuronal activity. While being able to distinguish
brain activations even a few millimeters apart, fMRI suffers from poor
temporal resolution with sampling rates typically lower than 1 Hz.

Compared to fMRI, electro- and magnetoencephalography (EEG/
MEG) provide much higher temporal resolution thus making them
attractive techniques for studying interactions between different brain
structures.

Yet, EEG and MEG suffer from low spatial resolution since only
superpositions of brain signals originating from the entire cortical gray
matter can be recorded. Sensor space analyses in general are not
suitable to infer the involvement of brain structures in interaction even
in such broad terms as ‘frontal-to-occipital’ (Haufe, 2011; Van de Steen
et al., 2016). The interpretation of EEG/MEG data in neuroanatomical
terms therefore requires a reconstruction of the sources from the
recorded data. This, however, requires a solution of an ‘ill-posed’
inverse problem, for which infinitely many solution exists. To select a
unique solution, prior knowledge of the source characteristics needs to
be employed. Consequently, there is a host of methods estimating
sources under specific assumptions.

The choice of an inverse method is a factor that heavily influences
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the reconstructed brain activity, as well as subsequent analyses relying
on the recovered sources. Other important factors are the specifics of
the physical model of electrical current flow in the head and the choice
of an anatomical template with which to perform the source recon-
struction. In practice, researchers typically resort to one of the publicly
available toolboxes for source analysis such as Brainstorm (Tadel et al.,
2011), FieldTrip (Oostenveld et al., 2010), EEGLAB (Delorme and
Makeig, 2004) and MNE (Gramfort et al., 2014). These toolboxes
typically provide ready-made anatomical templates, methods for
electrical forward calculations, and implementations of inverse solu-
tions. While the methods portfolios provided by different toolboxes are
in general similar, the different possible combinations of forward and
inverse models, as well as the differences in their implementations and
the choice of their numerous parameters (such as tissue conductivities,
segmentation and meshing parameters for forward models, and
regularization and depth weighting constants for inverse models)
may lead to a substantial variability of possible source location and
connectivity estimates.

Numerous studies have quantified biases in the localization of brain
sources (e.g., Darvas et al. (2004), Haufe (2011), Gramfort et al.
(2013)), as well as in the determination of brain connectivity (e.g.,
Schoffelen and Gross (2009), Haufe et al. (2010), Haufe et al. (2013),
Ewald et al. (2013), Rodrigues and Andrade (2015), Haufe and Ewald
(2016)) for specific methods. The error of a statistical measure depends
however not only on its estimation bias but also on its variance. Large
variability in combination with the small sample sizes that are common
in neuroimaging studies have been identified as the major cause of the
lack of reproducibility that is generally observed (Button et al., 2013). A
recent study by Colclough et al. (2016) consequently assessed the
consistency of MEG source connectivity metrics across different
datasets.

When working with EEG/MEG source estimates, another source of
variability to be considered is the choice of the forward and inverse
modeling parameters. Intuitively, we would consider results based on
reconstructed sources only meaningful if they are reasonably consistent
across a range of widely accepted estimation procedures (pipelines)
when applied to the same data. An investigation of this latter factor
would help to assess the reliability of EEG and MEG based brain
connectivity estimation as a research tool, but has not yet been
provided.

With this work, we present the first comprehensive assessment of
the consistency of EEG source location and connectivity analyses across
common forward and inverse models. Our data is based on reconstruc-
tions performed in three different analysis packages using combina-
tions of three different inverse methods, three different electrical
modeling approaches, and two different template anatomies. We
investigated the sources and communication patterns of alpha-band
(8–13 Hz) oscillations using resting-state recordings acquired within
two different studies (N=65). We chose to use alpha oscillations
because: 1) they have high signal-to-noise ratio – thus ameliorating
the problem of noisy recordings and 2) these oscillations have relatively
stable spatial patterns across subjects corresponding to sources in
occipito-parietal and central areas of the cortex.

Our main goal was to bring the attention of the neuroimaging
community to the problem of identifying interacting neuronal sources
on the basis of the multichannel EEG recordings. We wanted to
illustrate pitfalls in obtaining measures of connectivity due to different
stages of the data analysis including selection of the toolbox, forward/
inverse models and connectivity estimates. By making researchers
aware of multiple problems in connectivity analysis, we hope to help
them with the validation of the results and consequently in establishing
reliable findings about the brain functioning.

The paper starts by introducing the data, preprocessing steps,
forward and inverse modeling approaches, and robust connectivity
measures. In the experimental part we first demonstrate that the choice
of the reference electrode dramatically influences EEG sensor-space

connectivity maps, making sensor-space analysis unsuitable for the
study of brain connectivity. Using pairwise correlations, we quantified
the similarity of inverse solutions and source connectivity matrices
when different source reconstruction pipelines are applied to the same
data. We also quantified the within-participant, between-participant
and between-study variability. We conclude the paper with a discussion
of the different sources of variability and their impact on the reliability
of results, strategies to deal with variability, general validation strate-
gies, and the perhaps counter-intuitive relationship between robust-
ness and consistency of connectivity measures.

Methods

Definition of alpha-band SNR

Alpha activity between 8 and 13 Hz is predominantly observed in
occipital EEG channels. Its peak frequency and range can differ across
participants. Following (Nolte et al., 2008), we define an individual
alpha band for each participant covering a symmetric 5 Hz range
(2.5 Hz left and right of the peak) around the participant's alpha peak
frequency, where the peak is determined by maximum spectral power
at electrodes O1 and O2, and is constrained to the interval

Hz[8.5, 12.5] . Alpha-band signal-to-noise ratio (SNR) of an EEG sensor
or reconstructed source is defined as the ratio between the spectral
power at the alpha peak and the average spectral power in 2 Hz wide
side bands to the left and right of the individual alpha band. Spectral
power is computed using the Welch method using non-overlapping
Hanning windows of 200 samples length, where we assume a sampling
frequency of 100 Hz.

Spatio-spectral decomposition (SSD)

We apply spatio-spectral decomposition (SSD, Nikulin et al.
(2011)) in order to remove brain activity without strong alpha peaks.
SSD seeks spatial filters w that maximize the signal power of the
projected data in a frequency band of interest (here, the alpha band)
while simultaneously suppressing the power in the left and right side
(flanking) bands. We use the same alpha and side bands as in the
definition of alpha-band SNR. Alpha band power was defined as the
sum of the squared signal after 2nd order Butterworth bandpass
filtering. The power in the side bands was computed analogously after
application of an appropriate bandpass filter and a subsequent notch
filter. Apart from these minor differences, SSD thus directly optimizes
the alpha-band SNR of the projected components as defined above.

The first SSD spatial filter is given by

w w C w
w C w

= arg max ,s

nw
1

⊤

⊤ (1)

where C ∈s
M M× is the covariance of the sensor data filtered in the

alpha band, and Cn is the covariance of the data filtered in the side
bands as outlined above. A complete SSD decomposition matrix can be
computed by solving a generalized eigenvalue problem (Nikulin et al.,
2011).

To identify the number of SSD components, a heuristic based on the
achieved alpha-band SNR of each component is employed, where only
components with SNR values larger than 2 are retained for further
analysis.

EEG source modeling

The generative model of EEG data is given by

∑ ϵt t tx L j( ) = ( ) + ( ) ,
β

i i
u ∈i (2)

where tx( ) ∈ M is the signal measured at M EEG electrodes at time t,
tj ( ) ∈i

3 is the activity of a single source at a brain location ui, and
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