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A B S T R A C T

Functional connectivity (FC) – the study of the statistical association between time series from anatomically
distinct regions (Friston, 1994, 2011) – has become one of the primary areas of research in the field
surrounding resting state functional magnetic resonance imaging (rs-fMRI). Although for many years
researchers have implicitly assumed that FC was stationary across time in rs-fMRI, it has recently become
increasingly clear that this is not the case and the ability to assess dynamic changes in FC is critical for better
understanding of the inner workings of the human brain (Hutchison et al., 2013; Chang and Glover, 2010).
Currently, the most common strategy for estimating these dynamic changes is to use the sliding-window
technique. However, its greatest shortcoming is the inherent variation present in the estimate, even for null
data, which is easily confused with true time-varying changes in connectivity (Lindquist et al., 2014). This can
have serious consequences as even spurious fluctuations caused by noise can easily be confused with an
important signal. For these reasons, assessment of uncertainty in the sliding-window correlation estimates is of
critical importance. Here we propose a new approach that combines the multivariate linear process bootstrap
(MLPB) method and a sliding-window technique to assess the uncertainty in a dynamic FC estimate by
providing its confidence bands. Both numerical results and an application to rs-fMRI study are presented,
showing the efficacy of the proposed method.

1. Introduction

Functional connectivity (FC), the study of the statistical association
between two or more anatomically distinct time-series (Friston, 1994,
2011), has become one of the primary areas of research in the field
surrounding functional magnetic resonance imaging (fMRI). Although
researchers implicitly assumed that FC was stationary across time,
particularly in resting-state fMRI (rs-fMRI), it has recently become
increasingly clear that the ability to assess dynamic changes in FC is
critical for a better understanding of the inner workings of the human
brain (Hutchison et al., 2013; Chang and Glover, 2010). The associa-
tion between changes in connectivity and various diseases has been
described in a number of studies (Filippini et al., 2009), and the hope is
that this will provide the beginning of a new and deeper understanding
of neurodegenerative diseases and neuropsychiatric disorders, such as
Alzheimer's disease (Jones et al., 2012) or autism (Starck et al., 2013).
The results also support the belief that changes in neural activity
patterns associated with dynamically changing FC can provide greater
understanding of the fundamental properties of brain networks in both
healthy subjects and patients suffering from various mental disorders.

Despite the increased attention, the results of dynamic FC analyses
are often difficult to interpret. This is due in part to the inherent low
signal-to-noise ratio in the data, physiological artifacts, and variation
over time in both the mean and variance of the blood-oxygen-level
dependent (BOLD) signal. These issues conspire together to create
problems with the interpretation of transient fluctuations in FC
(Hutchison et al., 2013), and it is often difficult to determine whether
they are in fact due to neuronal activity or simply a byproduct of
random noise (Lindquist et al., 2014; Hindriks et al., 2016). In
addition, a lack of clear analytical strategy and guidelines for proper
interpretation of the results further contribute to this ambiguity. As a
consequence, significant research and methodological developments
are necessary to move the field forward.

A number of approaches have been proposed to assess dynamic FC
in resting-state fMRI data, including independent component analysis,
time-frequency coherence analysis (Chang and Glover, 2010), time
series models (Lindquist et al., 2014), and change-point detection
methods (Cribben et al., 2012, 2013; Xu and Lindquist, 2015). To date,
the so-called sliding-window approach (Allen et al., 2012; Chang and
Glover, 2010; Handwerker et al., 2012) has been the most common
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analysis strategy, and it is the focus of this work. This approach has a
number of benefits, including the fact that it is appealingly simple in
both application and intuition. However, in spite of these benefits, the
approach has several drawbacks. These include the arbitrary choice of
window length and the fact that all observations within the window are
weighted equally (Lindquist et al., 2014). However, its greatest short-
coming is possibly the inherent variation present in the estimate, even
for null data, which is easily confused with true time-varying changes in
connectivity (Lindquist et al., 2014; Hindriks et al., 2016). This can
have serious consequences as even spurious fluctuations caused by
noise can easily be confused with important signal.

For these reasons, the ability to assess the level of uncertainty in
sliding-window correlation estimates is of critical importance. In
particular, the introduction of confidence intervals for the correlation
estimates could help identify, and screen for, changes in connectivity
that are driven purely by random noise. One possible approach towards
obtaining such intervals is to use the bootstrap procedure. Standard
bootstrap methods are not readably applicable to time series data due
to the dependence structure (Kreiss and Paparoditis, 2011). For this
reason, in the past few years, new techniques have been proposed for
bootstrapping dependent and stationary time series data (see Kreiss
and Paparoditis, 2011) for a summary of these methods). To date, this
work has primarily focused on estimation of the sample mean and does
not consider statistics of order higher than two. To circumvent this
problem, Jentsch and Politis (2015) introduced the multivariate linear
process bootstrap (MLPB) method. They employ a tapered covariance
matrix estimator, which gives higher weights to observations in a close
proximity and lower weights to observations farther apart. Application
of this procedure results in a stable and consistent estimator of the
covariance matrix arising from multivariate time series. These proper-
ties of an estimator are critical for accurate estimation of dynamic FC,
and standard bootstrap methods do not share them.

In this work, we propose a new non-parametric model-free
approach that combines the MLPB and a sliding-window technique
in order to assess the uncertainty in dynamic FC estimates by providing
confidence bands. Specifically, we divide time series into adjacent
blocks. We use data within each block to generate bivariate time series
bootstrap samples. We combine generated data from adjacent blocks
into time series. Next, we define a moving time window of size w and
use data within that window to calculate the correlation coefficient.
Subsequently, the window is moved forward step-wise through time,
and the procedure is repeated for each shift. As a result, a time-varying
measure of correlation between brain regions is obtained as well as
dynamically changing confidence bands. Our algorithm, denoted
Dynamic Connectivity Bootstrap Confidence Bands (DCBootCB), pro-
vides a valid estimate of the confidence band for the sliding-window
estimator of the correlation coefficient.

The properties of the proposed estimator are studied in a series of
simulation studies. Our simulations provide evidence that the MLPB
approach to bootstrapping correlated time series gives valid model-free
time-varying connectivity estimates together with their associated
confidence bands. In addition, they show that the theoretical properties
of the proposed approach are supported by empirical evidence. We
conclude by applying the DCBootCB algorithm to resting state fMRI
data.

The article is organized as follows: Section 2 introduces a statistical
framework of our problem; Section 3 presents our approach for
estimating the time-varying functional connectivity and its confidence
bands; Section 4 provides the description and the results of the
simulation study; Section 5 presents an application of our method to
rs-fMRI data; and Section 6 contains conclusions and a discussion.

2. Statistical framework

Our work is concerned with the principled estimation of confidence
bands for the time-varying functional connectivity between two time

series measured at uniformly sampled time points t=1,…,T. Let a two
dimensional time series be denoted by t t Ty{ ( ), = 1,…, } with

t y t y ty( ) = ( ( ), ( ))1 2
⊤, where ⊤ means transpose. Further, assume that:
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where μ t( ) is the mean of ty( ) conditioned on all observations obtained
up to time t, defined by E y t y y t( ( ) | (1),…, ( − 1)), and ε t( ) is the error
term at time t with mean zero and covariance matrix also conditioned
on all observations obtained up to time t given by:
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The diagonal terms of the matrix Σ t( ) are the time-varying
variances of the two time series y t y t( ), ( )1 2 . The off-diagonal term is
the covariance between the two time series y t y t( ), ( )1 2 . All of these
terms are conditioned on all observations obtained till time t.
Equivalently, the conditional covariance matrix can be expressed as:
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where the conditional standard deviations of time series are repre-
sented in the diagonal matrix D(t); R(t) is the correlation matrix
conditioned on all observations obtained till time t, and ρ t( ) is the
correlation coefficient conditioned on the observations collected up to
time t, which is defined as:
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The main goal of this paper is to estimate the confidence bands for
ρ t( ) by applying a modified sliding-window technique. The general idea
behind the basic sliding-window technique is based on calculating the
correlation coefficient from the data contained within a window of fixed
length w. By moving the window, the correlation coefficient can be
computed at each time point. This can be expressed as follows:
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There are a number of potential drawbacks of using the sliding-window
approach directly, including its inability to handle sudden changes, the
equal weighting of all observations within a window, and the arbitrary
selection of window length (Lindquist et al., 2014). Due to these
shortcomings, it is important to be able to critically evaluate the
uncertainty present in the sliding-window estimate. However, the
sliding-window technique does not provide valid and straightforward
non-parametric estimates for the confidence bands. The most com-
monly used approach for computing the confidence interval for the
correlation estimator is to use a parametric, asymptotic Fisher approx-
imation for the correlation coefficient. However, as we show in this
paper, this approach has a number of shortcomings in practice and is
not valid for correlated time series.

3. Estimation of time-varying functional connectivity and its
confidence bands

In this section, we introduce the DCBootCB algorithm for estimat-
ing the time-varying correlation coefficient and its confidence bands. In
order to understand the DCBootCB algorithm, we begin by giving a
brief summary of statistical concepts used in our study and the MLPB
method proposed by Jentsch and Politis (2015).

We start by providing short overview of a number of statistical
concepts. A confidence interval at a given confidence level, for example
95%, implies that if the same population is sampled on many occasions
and interval estimates are calculated each time, the resulting intervals
would include the true population parameter in approximately 95 % of
the cases.
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