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ARTICLE INFO ABSTRACT

Connectivity studies using resting-state functional magnetic resonance imaging are increasingly pooling data
acquired at multiple sites. While this may allow investigators to speed up recruitment or increase sample size,
multisite studies also potentially introduce systematic biases in connectivity measures across sites. In this work,
we measure the inter-site effect in connectivity and its impact on our ability to detect individual and group
differences. Our study was based on real, as opposed to simulated, multisite fMRI datasets collected in N=345
Resting-state young, healthy subjects across 8 scanning sites with 3 T scanners and heterogeneous scanning protocols, drawn
FMRI connectivity from the 1000 functional connectome project. We first empirically show that typical functional networks were
SVM reliably found at the group level in all sites, and that the amplitude of the inter-site effects was small to
moderate, with a Cohen's effect size below 0.5 on average across brain connections. We then implemented a
series of Monte-Carlo simulations, based on real data, to evaluate the impact of the multisite effects on detection
power in statistical tests comparing two groups (with and without the effect) using a general linear model, as
well as on the prediction of group labels with a support-vector machine. As a reference, we also implemented the
same simulations with fMRI data collected at a single site using an identical sample size. Simulations revealed
that using data from heterogeneous sites only slightly decreased our ability to detect changes compared to a
monosite study with the GLM, and had a greater impact on prediction accuracy. However, the deleterious effect
of multisite data pooling tended to decrease as the total sample size increased, to a point where differences
between monosite and multisite simulations were small with N=120 subjects. Taken together, our results
support the feasibility of multisite studies in rs-fMRI provided the sample size is large enough.
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1. Introduction suffering from mild cognitive impairment (Tam et al., 2015). The

rationale behind such initiatives is to dramatically increase the sample

Main objective. Multisite studies are becoming increasingly com-
mon in resting-state functional magnetic resonance imaging (rs-fMRI).
In particular, some consortia have retrospectively pooled rs-fMRI data
from multiple independent studies comparing clinical cohorts with
control groups, e.g. normal controls in the 1000 functional connectome
project (FCP) (Biswal et al., 2010), children and adolescents suffering
from attention deficit hyperactivity disorder from the ADHD200
(Milham et al., 2012; Fair et al., 2012), individuals diagnosed with
autism spectrum disorder in ABIDE (Nielsen et al., 2013), individuals
suffering from schizophrenia (Cheng et al., 2015), or elderly subjects

size at the cost of decreased sample homogeneity. The systematic
variations of connectivity measures derived using different scanners,
called site effects, may decrease the statistical power of group compar-
isons, and somewhat mitigate the benefits of having a large sample size
(Brown et al., 2011; Jovicich et al., 2016). In this work, our main
objective was to quantitatively assess the impact of site effects on group
comparisons in rs-fMRI connectivity.

Group comparison in rs-fMRI connectivity. In this work, we
focused on the most common measure of individual functional
connectivity, which is the Pearson's correlation coefficient between
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the average rs-fMRI time series of two brain regions. To compare two
groups, a general linear model (GLM) is typically used to establish the
statistical significance of the difference in average connectivity between
the groups. Finally a p-value is generated for each connection to
quantify the probability that the difference in average connectivity is
significantly different from zero (Worsley and Friston, 1995; Yan et al.,
2013). If the estimated p-value is smaller than a prescribed tolerable
level of false-positive findings (see for more detail Table 1), generally
adjusted for the number of tests performed across connections, say
a = 0.001, then the difference in connectivity is deemed significant.

Statistical power in group comparisons at multiple sites. The
statistical power of a group comparison study is the probability of
finding a significant difference, when there is indeed a true difference.
A careful study design involves the selection of a sample size that is
large enough to reach a set level of statistical power, e.g. 80%. In the
GLM, the statistical power actually depends on a series of parameters
(Desmond and Glover, 2002; Durnez et al., 2014): (1) the sample size
(the larger the better); (2) the absolute size of the group difference (the
larger the better), and, (3) the intrinsic variability of measurements
(the smaller the better) (4) the rejection threshold a for the null
hypothesis.

Sources of variability: factors inherent to the scanning protocol. In
a multisite (or multi-protocol) setting, differences in imaging or study
parameters may add variance to rs-fMRI measures, e.g. the scanner
make and model (Friedman and Glover, 2006; Friedman et al., 2008),
repetition time, flip angle, voxel resolution or acquisition volume
(Friedman and Glover, 2006), experimental design such as eyes-
open/eyes-closed (Yan et al., 2009), experiment duration (Van Dijk
et al.,, 2010), and scanning environment such as sound attenuation
measures (Elliott et al., 1999), or head-motion restraint techniques
(Edward et al., 2000; Van Dijk et al., 2012), amongst others. These
parameters can be harmonized to some extent, but differences are
unavoidable in large multisite studies. The recent work of Yan et al.
(2013) has indeed demonstrated the presence of significant site effects
in rs-fMRI measures in the 1000 FCP. Site effects will increase the
variability of measures, and thus decrease statistical power. To the best
of our knowledge, it is not yet known how important this decrease in
statistical power may be.

Sources of variability: within-subject. The relative importance of
site effects in rs-fMRI connectivity depends on the amplitude of the
many other sources of variance. First, rs-fMRI connectivity only has
moderate-to-good test-retest reliability using standard 10-minute
imaging protocols (Shehzad et al., 2009), even when using a single
scanner and imaging session. Differences in functional connectivity
across subjects are also known to correlate with a myriad of behaviour-
al and demographic subject characteristics (Anand et al., 2007; Sheline
et al., 2010; Kilpatrick et al., 2006). Taken together, these sources of
variance reflect a fundamental volatility of human physiological
signals.

Sources of variability: factors inherent to the site. In addition to
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physiology, some imaging artefacts will vary systematically from
session to session, even at a single site. For example, intensity non-
uniformities across the brain depend on the positioning of subjects
(Caramanos et al., 2010). Room temperature has also been shown to
impact MRI measures (Vanhoutte et al., 2006). Given the good
consistency of key findings in resting-state connectivity across sites,
such as the organization of distributed brain networks (Biswal et al.,
2010), it is reasonable to hypothesize that site effects will be small
compared to the combination of physiological and within-site imaging
variance.

Multivariate analysts. Another important consideration regarding
the impact of site effects on group comparison in rs-fMRI connectivity
is the type of method used to identify differences. The concept of
statistical power is very well established in the GLM framework, which
tests one brain connection at a time (mass univariate testing).
However, multivariate methods that combine several or all connectivity
values in a single prediction are also widely used and likely affected by
the site effects. A popular multivariate technique in rs-fMRI is support-
vector machine (SVM) (Cortes and Vapnik, 1995). In this approach, the
group sample is split into a training set and a test set. The SVM is
trained to predict group labels on the training set, and the accuracy of
the prediction is evaluated independently on the test set. The accuracy
level of the SVM captures the quality of the prediction of clinical labels
from resting-state connectivity, but does not explicitly tell which brain
connection is critical for the prediction. The accuracy score can thus be
seen as a separability index between the individuals of two groups in
high dimensional space. Altogether, the objectives and measures of
statistical risk for SVM and GLM are quite different. Because SVM has
the ability to combine measures across connections, unlike univariate
GLM tests, we hypothesized that the GLM and SVM will be impacted
differently by site effects. Even though the accuracy is expected to be
lower for the multisite than the monosite configuration, it as been
shown that the generalizability of a predictive model to unseen sites is
greater for models trained on multisite than monosite datasets as
shown by Abraham et al. (2016).

Specific objectives. Our first objective was to characterize, using real
data, the amplitude of systematic site effects in rs-fMRI connectivity
measures across sites, as a function of within-site variance. We based
our evaluation on images generated from independent groups at 8 sites
equipped with 3 T scanners, in a subset (N=345) of the 1000 FCP. Our
second objective was to evaluate the impact of site effects on the
detection power of group differences in rs-fMRI connectivity. To
answer this question directly, one would need to scan two different
cohorts of participants at least twice, once in a multisite setting and
once in a monosite setting. Such an experiment may be too costly to
implement for addressing a purely technical objective. As a more
feasible alternative, we implemented a series of Monte Carlo simula-
tions, adding synthetic “pathological” effects in the 1000 FCP sample.
One interesting feature of the “1000 FCP” dataset is the presence of one
large site of ~200 subjects and 7 small sites of ~20 subjects per site. We
were therefore able to implement realistic scenarios following either a
monosite or a multisite design (with 7 sites), with the same total
sample size. Our simulations gave us full control on critical aspects for
the detection of group differences, such as the amplitude of the group
difference, sample size, and the balancing of groups across sites. We
evaluated the ability of detecting group differences both in terms of
sensitivity for a GLM and in terms of accuracy for a SVM model.

2. Method
2.1. Imaging sample characteristics

The full 1000 FCP sample includes 1082 subjects, with images
acquired over 33 sites spread across North America, Europe, Australia
and China. As the 1000 FCP is a retrospective study, no effort was
made to harmonize population characteristics or imaging acquisition
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