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A B S T R A C T

We propose a variance components linear modeling framework to conduct statistical inference on functional
connectivity networks that directly accounts for the temporal autocorrelation inherent in functional magnetic
resonance imaging (fMRI) time series data and for the heterogeneity across subjects in the study. The novel
method estimates the autocorrelation structure in a nonparametric and subject-specific manner, and estimates
the variance due to the heterogeneity using iterative least squares. We apply the new model to a resting-state
fMRI study to compare the functional connectivity networks in both typical and reading impaired young adults
in order to characterize the resting state networks that are related to reading processes. We also compare the
performance of our model to other methods of statistical inference on functional connectivity networks that do
not account for the temporal autocorrelation or heterogeneity across the subjects using simulated data, and
show that by accounting for these sources of variation and covariation results in more powerful tests for
statistical inference.

1. Introduction

Functional connectivity (FC) is the investigation of the temporal
dependence in the fluctuations of the blood oxygenation level-depen-
dent (BOLD) signals across different regions in the brain (Friston et al.,
1993; Fiecas et al., 2013; Cribben and Fiecas, 2016). FC is sometimes
referred to as the undirected association between two spatially
distinct regions of the brain. FC has been studied using noninvasive
imaging techniques such as functional magnetic resonance imaging
(fMRI), electroencephalography (EEG) and magnetoencephalography
(MEG) and using invasive techniques such as electrophysiology
(ECoG).

It has been shown that FC can be disrupted for various neurological
disorders including Alzheimer's disease (Buckner et al., 2009; Sorg
et al., 2007), depression (Lui et al., 2011; Kaiser et al., 2015) and
autism (Di Martino et al., 2014), compared to healthy subjects. An
objective of FC analyses is to discover specific and stable neuroimaging
biomarkers or phenotypes of neurological disorders using FC networks
from resting-state data. Existing standard methods for conducting
statistical inference on the FC networks between a group of patients
and a group of healthy controls in a multi-subject resting-state fMRI
data set can be broadly divided into two sets. The methods are based on

techniques from complex network analysis that originated from graph
theory. In this setup, a brain network is represented by a graph, in
which the vertices of the graph correspond to regions-of-interest
(ROIs), and edges correspond to the functional associations between
the ROIs. The first set of methods directly considers the measured
signal between the graph edges, whereas the second set of methods
employs graph summary statistics. More specifically, the first set of
methods begins by defining either functionally or anatomically the
ROIs or the vertices in the network. To estimate the edges, we simply
cross-correlate the BOLD signals obtained from these regions, for each
subject. After applying the Fisher Z-transform to the sample correlation
coefficients, we can use a two-sample t-test on the sample correlation
coefficients to test the hypothesis of equal FC between the patients and
the controls. The second set of methods also estimates the vertices and
edges in the same fashion as the first set of methods (using various
methods such as correlation, thresholded correlation, partial correla-
tion or sparse partial correlation) for each subject, and then estimates
graph summary statistics such as small–worldness, degree distribution,
modularity to name just a few. Then to conduct statistical inference, we
can test for differences between the patients and the controls groups on
the graph summary statistics (Bullmore and Sporns, 2009; Zalesky
et al., 2010, 2012; Ginestet et al., 2013).
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Other statistical methods also exist in this space. The exponential
random graph modeling (ERGM) framework (Simpson et al., 2012)
allows for the statistical comparison of groups of brain networks while
accounting for topological differences across networks. However, it is
difficult to incorporate topological features inherent in each individual
network when comparing groups of networks (Simpson et al., 2011).
Simpson et al. (2013) introduced two methods, the first of which
compares the consistency of network organization between groups
while the second compares the degree distributions (distribution of the
number of connections each node has) between groups. In addition,
Simpson and Laurienti (2015) introduced a two-part mixed-effects
modeling framework that allows for testing for overall group differ-
ences in the strength and probability of network connections, group
differences in network topology, and individual edge differences while
accounting for the complex dependence structures of the networks.
More recently, Pan et al. (2014) developed a permutation testing
procedure called the aSPU method which was then used by Kim et al.
(2015) to test for equality of FC networks. The latest developments in
this area include the work by Fujita et al. (2015), who used the concept
of correlation between graphs to identify differences in the interactions
between controls and patients, and the work by Belilovsky et al. (2015),
who introduced a hypothesis test for differences in Gaussian graphical
models with an application to brain connectivity.

There are a number of issues with the standard sets of methods.
First, the methods implicitly assume that the BOLD signals are
temporally uncorrelated, which is not the case (Friston et al., 1995).
Hence, it is important for researchers to understand how this assump-
tion affects not only their FC estimates but also the hypothesis tests they
carry out on their FC estimates. Second, the standard methods fail to
account for the heterogeneity across subjects which also leads to
spurious results. Finally, the standard methods either carry out pairwise
edge tests between the groups of patients and controls or summarize the
networks using graph summary statistics and then tests for equality
between the groups. In both cases, the equality of the overall FC network
is not being explicitly tested. Of course, one could use a Hotelling T2 test,
which is a multivariate version of the t-test, to test the equality of the
entire network, but as we will observe later this test has very low power
or is impossible to compute when the number of subjects is small.

In this work, we are particularly interested in comparing the FC
networks between a group of patients and a group of healthy controls in
a multi-subject resting-state fMRI data set. To this end, we introduce a
variance components framework for modeling and conducting statis-
tical inference on FC networks that directly takes into account the
autocorrelation inherent in the ROI time series of each subject and
subject heterogeneity. We show that, by accounting for these, our
statistical tests can show a substantial improvement in performance
with respect to statistical power. We focus on multi-subject FC for
resting-state fMRI data, however, the statistical challenges we outline
and methods we develop are applicable to modelling and performing
statistical inference about FC in other neuroimaging modalities such as
EEG, MEG and ECoG. We apply our variance components model to a
resting-state fMRI study of reading in order to characterize the resting
state networks that are related to reading processes. This topic is
currently of great interest (Koyama et al., 2010, 2011). There is
evidence for an intrinsically connected set of regions that includes
the same brain areas that are shown to be active in task-based reading
paradigms, including fusiform gyrus, superior temporal gyrus, tem-
poro-parietal junction, precentral gyrus and inferior frontal gyrus
(Koyama et al., 2013; Murdaugh et al., 2015). Indeed, researchers
have shown that the strength of FC between these regions appears to be
sensitive to differences between individuals with and without reading
disability (Horowitz-Kraus et al., 2015). In addition, as reading
performance increases following treatment, so too does the FC between
visual regions and i) attentional networks, ii) executive networks, and
iii) language networks in both typical and reading impaired children
(Horowitz-Kraus et al., 2015; Murdaugh et al., 2015). Given the many

confounding variables (e.g., previous diagnosis of ADHD, comorbid
learning disabilities) and uncertainties about proper control groups
(e.g., control groups matched by age and reading abilities) that are
inherent in task-dependent brain imaging studies, characterization of
the task-independent reading network serves as one approach to
furthering our understanding of the underlying reading framework in
both skilled and impaired readers.

This paper is organized as follows. In Section 2 we introduce the
theoretical background of our variance components model and how to
estimate the model's parameters. We also detail the resting-state fMRI
data set on typical and reading impaired young adults and the
simulation study. In Section 3 we show the performance of our model
on these data sets. We end with a discussion and conclusions in
Sections 4 and 5, respectively.

2. Materials and methods

2.1. A variance components model

Suppose we observe a p-variate time series or similarly a network
consisting of p ROIs, across N subjects. Without loss of generality,
suppose that the marginal time series across all subjects have been
detrended. To quantify the strength of the FC, we calculate the sample
correlations between the marginal time series observed from each ROI,
for all subjects. Then each subject has q p p= ( − 1)/2 many ROI pairs
of interest. Thus, testing on the FC network is conducted on N many q-
variate vectors, where each vector comprises all pairwise sample
correlations for each subject.

Each term of our proposed model is constructed as follows. Let rij
denote the i-th sample correlation coefficient for the j-th subject and

r r r r r rY = ( , …, , , …, , …, , …, )q q N qN11 1 12 2 1 be the vector of sample cor-
relation coefficients stacked vertically across the subjects. Let the
design matrix X be the Nq×q matrix of N many q×q identity matrices
stacked vertically. The first error term, ϵ, has mean the zero vector and
covariance matrix Σ and is used to model variability and covariability
coming from the temporal autocorrelation in the ROI time series
within each subject. To construct it, we first let ϵij denote the i-th error
term for the j-th subject and then N Σ0ϵ = (ϵ , …, ϵ )′ ∼ ( , )j j qj j1 . The
diagonal elements of the covariance matrix Σj capture the variances of
the correlation coefficients between each ROI for the j-th subject, and
the off-diagonal elements capture the covariance between sample
correlation coefficients observed between different pairs of ROIs within
the j-th subject. We then construct Σ as a block-diagonal matrix with
Σ Σ, …, N1 along the diagonals. We simply stack the error term across
all subjects, i.e., ϵ = (ϵ ′, …, ϵ ′)′N1 , so that this first error term has
covariance matrix Σ.

The second error term, ψ, has mean the zero vector and covariance
matrix Ψ and controls for the heterogeneity of the subjects. To
formulate it, let ψ N 0 Ψ∼ ( , )j 0 , where Ψ0 is a q×q scaled diagonal
identity matrix. The covariance matrix Ψ is also a block-diagonal
matrix with Ψ0 along the diagonals. Each element of Ψ0 represents the
amount of variability that can be attributed to the sampling of the
subjects across a population. Since Ψ0 is common across all subjects, we
borrow information across all subjects to estimate this parameter.
Similarly, for the second error term we simply stack across all subjects,
i.e., ψ ψ ψ= ( ′, …, ′)′N1 , so that this error term has covariance matrix Ψ.

To perform statistical inference on the FC network, our model
accounts for i) the temporal autocorrelation in the marginal time series
within each subject, ii) the covariance between the different pairs of
sample correlation coefficients within each subject, and iii) the
variability due to the sampling of the subjects from an underlying
population. To this end, our proposed model takes the following form:

β ϵ ψY X= + + . (1)

The parameter of interest that captures the true FC is the vector β. We
assume that the two error terms, ϵ and ψ , are independent of each
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