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A B S T R A C T

To perform a joint analysis of multivariate neuroimaging phenotypes and candidate genetic markers obtained
from longitudinal studies, we develop a Bayesian longitudinal low-rank regression (L2R2) model. The L2R2
model integrates three key methodologies: a low-rank matrix for approximating the high-dimensional
regression coefficient matrices corresponding to the genetic main effects and their interactions with time,
penalized splines for characterizing the overall time effect, and a sparse factor analysis model coupled with
random effects for capturing within-subject spatio-temporal correlations of longitudinal phenotypes. Posterior
computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations show that the L2R2
model outperforms several other competing methods. We apply the L2R2 model to investigate the effect of
single nucleotide polymorphisms (SNPs) on the top 10 and top 40 previously reported Alzheimer disease-
associated genes. We also identify associations between the interactions of these SNPs with patient age and the
tissue volumes of 93 regions of interest from patients’ brain images obtained from the Alzheimer's Disease
Neuroimaging Initiative.

1. Introduction

Many longitudinal neuroimaging studies concomitantly collect
genetic and recurrent imaging data to track individual changes in
brain structure and function over time. Several neurodegenerative
disorders, including Alzheimer disease (AD), are hypothesized to occur
from abnormal development of the brain, which may be caused by the
additive and/or interactive effects of various risk genes and environ-
mental risk factors, each contributing small individual effects. Thus,
recurrent neuroimaging measures may lead to discoveries of the
genetic pathways and the causal genes associated with the specific
brain changes underlying such neurodegenerative disorders
(Scharinger et al., 2010; Paus, 2010; Peper et al., 2007; Chiang et al.,
2011a, 2011b; Saykin et al., 2015).

A standard statistical method used in longitudinal imaging and
genetics studies is the massive marginal association (MMA) framework
(Li et al., 2013; Zhang et al., 2014; Guillaume et al., 2014; Hibar, 2011;
Shen et al., 2010; Bernal-Rusiel et al., 2013; Zhang et al., 2014). This

approach repeatedly fits a linear mixed effects model (or generalized
estimating equations) for paired imaging phenotypes and genetic
markers. Because the MMA framework entails numerous comparisons,
it can detect only phenotype-marker pairs with extremely strong
signals.

Several attempts have been made to more precisely investigate the
effect of multiple genotypes on longitudinal phenotypes. Chen and
Wang (2011) proposed functional mixed-effect models with penalized
splines and varying coefficients, but they focused on small number of
predictors and number of response variables in a low-dimensional
setting. Wang et al. (2011) used a sparse multitask regression to
examine the association between genetic markers and longitudinal
neuroimaging phenotypes. However, their model focused on subjects
with the same number of repeated measures and ignored the spatio-
temporal correlations of imaging phenotypes. Therefore, the multitask
regression model may lead to loss of statistical power to detect
phenotype-marker pairs with moderate to weak signals. Vounou et al.
(2011) and Silver et al. (2012) proposed that a sparse reduced-rank
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regression model using penalized regression can detect the main
genetic effects on longitudinal phenotypes. They, however, did not
account for the spatiotemporal association among the longitudinal
phenotypes, which is important for estimation and prediction accuracy.
Moreover, none of these studies explored SNP-age interactions, which
can reveal dynamic genetic effects on phenotypes.

Several important statistical concerns are associated with the
joint analysis of neuroimaging phenotypes and a set of candidate
genotypes obtained from longitudinal imaging and genetic studies.
First, the number of regression coefficients can be much larger
than the sample size, denoted as N. Specifically, let d and p be the
dimension of the responses and the number of covariates, respectively.
Fitting a multivariate linear mixed effects model usually requires
estimating a d×p matrix of regression coefficients, which can be much
larger than N, even for moderately high d and p. Second, as illustrated
in Fig. 1a, to improve prediction accuracy (Breiman and Friedman,
1997), it is critically important to account for unstructured, within-
subject spatial correlations among multivariate neuroimaging
phenotypes. Third, as illustrated in Fig. 2a, to improve both estimation
and prediction accuracy, it is also important to account for within-
subject temporal correlation. Fourth, as shown in Fig. 2b,c, the
temporal growth pattern varies across regions of interest (ROIs) in
the brain. Accounting for the overall longitudinal change of ROIs is
required to increase the detection power of the genetic effects. Fifth, as

shown in Fig. 2b, the genetic effects on ROI volumes can vary across
time.

Here, we have developed a Bayesian longitudinal low-rank regres-
sion (L2R2) model for the joint analysis of high-dimensional long-
itudinal responses and covariates. We integrated multiple robust
methods to explicitly address the new challenges described previously.
Our study has four major methodological contributions that were
previously undescribed:

1. To the best of our knowledge, L2R2 is the first model of its kind for
jointly analyzing high-dimensional longitudinal responses and cov-
ariates, although several approaches have been used for high-
dimensional responses and covariates in cross-sectional studies
(Rothman et al., 2010; Vounou et al., 2010; Zhu et al., 2014). The
L2R2 model also provides a set of standard inference tools (e.g.
standard deviation) for determining various unknown parameters.
Zipunnikov et al. (2014) proposed a functional principle compo-
nents analysis for high dimensional (>10, 000) longitudinal re-
sponses, where the intercepts and slopes of time for all voxels were
modeled by a few basis functions. However, their methods cannot
handle high-dimensional responses and covariates simultaneously
because the dimension of the covariance matrix that requires time-
consuming spectral decomposition equals the product of the dimen-
sions of the responses and covariates.

Fig. 1. The characteristics of the ROIs and SNPs from the ADNI data set and their association.

Z.-H. Lu et al. NeuroImage 149 (2017) 305–322

306



Download English Version:

https://daneshyari.com/en/article/5631255

Download Persian Version:

https://daneshyari.com/article/5631255

Daneshyari.com

https://daneshyari.com/en/article/5631255
https://daneshyari.com/article/5631255
https://daneshyari.com

