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ARTICLE INFO ABSTRACT

Keywords: Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded
Semantics in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive
Electrocorticography approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not
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known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-
dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related
neural responses. Using these semantic attribute encoding models, untrained objects were decoded with
accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that
high-gamma activity (70-110 Hz) at basal occipitotemporal electrodes was associated with specific semantic
dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in
close agreement with reports from other imaging modalities on the time course and functional organization of
semantic processing along the ventral visual pathway during object recognition. The semantic attribute
encoding model approach is critical for decoding objects absent from a training set, as well as for studying
complex semantic encodings without artificially restricting stimuli to a small number of semantic categories.

1. Introduction

The view that objects are encoded according to their semantic
attributes or features, while not new, has become quite practical. Under
an attribute-based view, a concept can be encoded over a large set of
meaningful attributes, with each attribute assigned a value or set of
values related to its probability, weight, or importance (Rosch, 1978).
For example, the encoding of the concept “bird” assigns high prob-
abilities to attributes typical of birds (has beak, flies, etc.) and low or
zero probabilities to attributes atypical of birds (has four legs,
manmade, etc). Substantial work has been done to catalogue the
attributes and weights associated with different concepts, and attribute
ratings can account for a host of human judgments about the relation-
ships between concepts and the organization of categories (Binder
et al., 2016; Cree and McRae, 2003; Garrard et al., 2001; Ruts et al.,
2004). In related work on vector space models of semantics, automated
methods can be used in place of human annotators to learn latent
semantic features from the statistical properties of words and phrases

in large text corpora (Deerwester et al., 1990; Mikolov et al., 2013;
Pennington et al., 2014), and these latent features are similarly useful
in accounting for human judgments (Pereira et al., 2016).

Efforts to decompose concepts into their constituent attributes or
features have been used to great effect in the study of knowledge
representation in the human brain. Following methods pioneered by
Mitchell et al. (2008) to learn relationships between individual
semantic features and the neural activity patterns they evoke, subjects
perform tasks that require semantic processing — viewing or naming
objects (Clarke et al., 2014), reading words or sentences (Wehbe et al.,
2014), considering semantic attributes (Sudre et al., 2012), generating
category exemplars (Simanova et al., 2015), watching movies (Huth
et al., 2012), or listening to stories (Huth et al., 2016) — while neural
responses are recorded with functional magnetic resonance imaging
(fMRI) or magnetoencephalography (MEG). Because stimuli can be
represented in terms of their constituent semantic attributes or
features, a mapping can be learned between each semantic feature
and its associated neural responses (i.e. voxel intensities, MEG sensor

Abbreviations: (BOLD), Blood Oxygen Level Dependent; (ECoG), Electrocorticography; (fMRI), functional Magnetic Resonance Imaging; (MEG), magnetoencephalography; (MRA),

mean rank accuracy; (RSA), Representational Similarity Analysis
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Fig. 1. Training and testing encoding models from ECoG. (A) Patients named objects and spectral estimation was performed on their neural signals to produce mean power over a
variety of frequency bands and temporal windows (only high-gamma shown here). A subset of neural features (particular frequency bands at particular time windows at particular
electrodes) was selected for use in the encoding model. (B) Linear ridge regression was used to learn a neural encoding model §, which maps from semantic attribute ratings S to neural

feature values N. To decode a new neural activity pattern in generated by an untrained object, fi is compared via cosine distance to a set of predicted neural activity patterns generated by

applying B to a catalogue of possible objects and their semantic attributes.

amplitudes), typically through linear regression. These encoding mod-
els project semantic features into a neural feature space, and similarly,
decoding models can be used to project recorded neural activity
patterns into a semantic feature space.

The resulting neurosemantic models have provided new insights
into conceptual knowledge representation in the mind and brain. The
fact that neurosemantic models can be used to successfully learn
mappings between semantic and neural features suggests that the
brain's representation of objects involves decomposition into semantic
features. This paradigm also provides a framework for testing theories
about what specific semantic features are represented in the human
brain (Just et al., 2010), how they are encoded in neural activity (Huth
et al., 2016), and how cognitive processes modulate neurosemantic
representations (Cukur et al., 2013). Likewise, from a decoding
perspective, decompositional neurosemantic models are very powerful
in that they can interpret neural activity from concept classes they have
not been trained on in a process termed zero-shot learning (Palatucci
et al., 2009).

The impact of this approach, though, is limited by the quality and
quantity of available neural data. Non-invasive neuroimaging methods
are subject to lower signal-to-noise ratios, trade-offs between temporal
and spatial resolution, and indirect estimates of neural activity.
Invasive alternatives like electrocorticography (ECoG) can only be used
in the relatively rare clinical setting when implanting electrodes on the
surface of the cortex is a clinical necessity. As a result, spatial coverage
is determined solely by clinical considerations, which leads to varied
anatomical sampling across patients. At the same time, ECoG offers
high temporal resolution, a high signal-to-noise ratio due to direct
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contact between electrodes and the cortical surface, and more direct
observations of neural processing. Evidence of this can be found in
studies showing that ECoG responses correlate well with spiking
activity (Manning et al., 2009; Ray et al., 2008) and hemodynamic
responses (Logothetis et al., 2001; Niessing et al., 2005), with activity
in high-gamma frequencies (e.g. 70—110 Hz) serving as a particularly
good index of underlying neural processing.

Despite the potential advantages, there have been relatively few
studies of semantic attribute representation using ECoG. The few
attempts to use ECoG for semantic decoding have relied on
discriminative approaches over a small number of trained classes or
categories (Liu et al., 2009; Wang et al., 2011). In one of the only
published examples of semantic decoding from ECoG, Wang et al.
(2011) asked patients to perform several different tasks that activated
representations of semantic properties (e.g. visual object naming), and
then trained Support Vector Machine (SVM) and Gaussian Naive Bayes
(GNB) classifiers to decode the evoked responses to one of the three
possible target categories (i.e. foods, tools, and body parts).
Performance varied across subjects, tasks, and classifier types, with
mean classification rates of approximately 56% correct and a
range from approximately 40% to 74% (where 33% is chance),
indicating that substantial category information can be extracted from
ECoG. While encouraging, conclusions drawn from a very
restricted number of classes (e.g. foods, tools, and body parts) or
dimensions of variation (e.g. living vs. non-living, large vs. small)
may be partially confounded by expectation and perceptual set
effects that cause subjects to artificially attend to and process these
dimensions.



Download English Version:

https://daneshyari.com/en/article/5631302

Download Persian Version:

https://daneshyari.com/article/5631302

Daneshyari.com


https://daneshyari.com/en/article/5631302
https://daneshyari.com/article/5631302
https://daneshyari.com

