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A B S T R A C T

Purpose: White matter development during childhood and adolescence is characterised by increasing white
matter coherence and organisation. Commonly used scalar metrics, such as fractional anisotropy (FA), are
sensitive to multiple mechanisms of white matter change and therefore unable to distinguish between
mechanisms that change during development. We investigate the relationship between age and neurite density
index (NDI) from neurite orientation dispersion and density imaging (NODDI), and the age-classification
accuracy of NDI compared with FA, in a developmental cohort.
Method: Diffusion-weighted imaging data from 72 children and adolescents between the ages of 4–19 was
collected (M=10.42, SD=3.99, 36 male). We compared NODDI metrics against conventional DTI metrics
(fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD] and radial diffusivity [RD]) in terms of
their relationship to age. An ROC analysis was also performed to assess the ability of each metric to classify
older and younger participants.
Results: NDI exhibited a stronger relationship with age (median R2=.60) compared with MD (median R2=.39),
FA (median R2=.27), AD (median R2=.14), and RD (median R2=.35) in a high proportion of white matter tracts.
When participants were divided into an older and younger group, NDI achieved the best classification (median
area under the curve [AUC]=.89), followed by MD (median AUC=.81), FA (median AUC=.80), RD (median
AUC=.81), and AD (median AUC=.64).
Conclusion: Our results demonstrate the sensitivity of NDI to age-related differences in white matter
microstructural organisation over development. Importantly, NDI is more sensitive to such developmental
changes compared to commonly used DTI metrics. This knowledge provides justification for implementing
NODDI metrics in developmental studies.

Introduction

Brain maturation across childhood and adolescence is one of the
most dynamic and important periods in the development of the brain
(Paus et al., 1999; Sowell et al., 2003). Understanding typical devel-
opment of the brain in children and adolescents, when, where and why
maturational changes occur is important for a better understanding of
the localization, connectivity and maturation of brain function, cogni-

tion, and behavior. This understanding also establishes a baseline from
which to reveal when and how neurodevelopmental processes go awry.

A number of neuroimaging studies have sought to characterise the
cortical grey matter changes over development (Giedd et al., 1999;
Wierenga et al., 2014). White matter volume has consistently been
shown to increase throughout adolescence and into adulthood but little
is known about the underlying microstructural processes causing this
volume change or the relationship with function. Magnetic Resonance
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Imaging (MRI) techniques such as diffusion-weighted imaging (DWI)
provide the ability to indirectly examine the microstructural compo-
nents of white matter, with age-related changes in diffusion metrics
thought to relate to neurobiological processes including myelination
and axonal organization (Beaulieu, 2002; Paus, 2010).

The tensor model is most commonly used to derive white matter
microstructure metrics including fractional anisotropy (FA), mean,
axial and radial diffusivity (MD, AD and RD) (Basser and Pierpaoli,
1996; Mori and Zhang, 2006). FA, the most frequently used measure,
has been shown to increase over childhood and adolescence (Lebel
et al., 2008, 2012; Simmonds et al., 2014). This increase of FA with age
is typically attributed to increased myelination as the white matter
matures, however FA is a relatively non-specific metric, and can also be
influenced by white matter organisation, axonal density, as well as both
intra- and extra-cellular mechanisms (Beaulieu, 2009). The recently
developed neurite orientation dispersion density imaging (NODDI) is a
multi-compartment model of white matter microstructure, and models
the biophysical properties of white matter (Zhang et al., 2012). It offers
orientation dispersion index (ODI) and neurite density index (NDI) as
alternative metrics to FA. These two indices aim to better quantify, and
disentangle, neurite morphology in the brain. ODI models the intra-
neurite space (between axons) to characterise angular variation of
neurites as well as cell membranes, somas and glial cells that influence
the extra-neurite (extracellular) space. NDI models intra-neurite space
and characterises density of neurites by restricted diffusion
(Sepehrband et al., 2015). Being a more sophisticated model of
underlying neurobiology, these measures might reveal more about
the developing brain.

Given the relatively recent development of this technique, few
studies have investigated NODDI metrics over development. Chang
et al. (2015) revealed that across the lifespan, from childhood to late
adulthood, there is a strong relationship between NDI and chronolo-
gical age, compared with FA. Other studies have investigated the
relationship between NDI and pre-term birth (Kelly et al., 2016), early
development (Jelescu et al., 2015), and ageing in adulthood
(Kodiweera et al., 2016; Merluzzi et al., 2016), but have not directly
compared NODDI and DTI metrics.

Here we investigate the relationship between DTI and NODDI
metrics over white matter development in 72 children and adolescents
between 4 and 19 years of age. The main aims of this study were to: (1)
model age-related differences in diffusion metrics in development; and
(2) compare the sensitivity and specificity of NDI and ODI against DTI
metrics over age using an ROC analysis.

Methods

Participants

Participant demographic and imaging data were obtained from the
Cincinnati MR Imaging of NeuroDevelopment (C-MIND) Data
Repository. Full description of the recruitment process is detailed
online (https://cmind.research.cchmc.org/) (Holland et al., 2015).
Briefly, informed consent was received from the parent or guardian
of children between 4 and 17 years of age, and from adolescents that
were 18 years of age. Additionally, assent of children between 5 and 17
was obtained. All procedures were completed in accordance with the
Declaration of Helsinki. A total of 72 participants between the ages of
4–19 with multi-shell DWI data were included for analysis in this study
(M=10.42, SD=3.99, 36 male).

MRI acquisition

Participants underwent MRI at 3.0 T (Phillips Acheiva TX) with a
32-channel head coil at a single site, the Cincinnati Children's Hospital
Medical Center. Full details can be found at https://cmind.research.
cchmc.org/. In brief, diffusion-weighted images were obtained with a

spatial resolution of 2.0×2.0×2.0 mm, Field of view (FoV):
224×224×120, acquisition matrix: 112×109, bandwidth: 1752.6 Hz,
60 slices, Flip angle: 90°, 61 directions. In addition, 7 images with no
diffusion weighting were collected (interleaved b=0 s/mm2).

Two DWI shells were acquired, one b=1000 s/mm2 shell (relaxation
time/echo time [TR/TE]: 6614/81 ms) and one b=3000 s/mm2 shell
([TR/TE]: 8112/104 ms). For both shell acquisitions, the gradient
tables were constructed using the optimal approach by Cook et al.
(2007), which optimises the ordering of gradient directions in DWI so
that partial scans have the best spherical coverage.

Image processing and template creation

DWI data were run through the DTIPrep Quality Control Tool
(http://www.nitrc.org/projects/dtiprep), which is an automatic
pipeline that removes diffusion directions below a threshold of
acceptable motion and signal loss, and corrects for head motion and
eddy current artefact. After quality control, on average 57 diffusion-
weighted directions were kept for the b=1000 s/mm2 shell data (range:
[38, 61]), and 55 directions kept for the b=3000 s/mm2 shell data
(range: [39, 61]).

DTI-TK (Zhang et al., 2006) was used to create an unbiased
population-based template that uses both the average diffusion fea-
tures (e.g. diffusivities and anisotropy) as well as the anatomical shape
features (such as tract size) in the population. For this step, the low b-
value shell was corrected for eddy current distortions and motion
artefacts using the tool eddy_correct in the Functional Magnetic
Resonance Imaging of the Brain (FMRIB) group's software library
(FSL: 5.0.8) (Smith et al., 2004). The dtifit tool in FSL was then used to
generate eigenvalue and eigenvector maps for each participant, and
converted to a single volume in DTI-TK format. An initial population
specific template was bootstrapped using the IXI aging template
(Zhang et al., 2010) followed by affine and deformable alignment,
and finally resampled to 1 mm3 isotropic resolution.

Scalar map generation

Each participant's tensor volume was registered to the population-
based tensor template using diffeomorphic alignments. Subsequently,
scalar DTI maps (FA, MD, AD and RD) were generated from each
normalised tensor map using TVtool in DTI-TK.

Data were prepared for NODDI fitting by registering the b=3000 s/
mm2 shell to the b=1000 s/mm2 shell using FMRIB's Linear
Registration Tool (FLIRT) in FSL (Jenkinson and Smith, 2001). The
two shells were then merged, and subsequently corrected for eddy
current distortions and motion artefacts as above. In order to account
for the different TE/TR between the shells, each shell was divided by its
respective b0 image as per the developer's recommendation (Counsell
et al., 2014) and in line with previous studies that have used this
correction method (Kelly et al., 2016; Owen et al., 2014). These DWI
data were then converted to a NODDI compatible format, NODDI
fitting was performed with a Watson distribution (Zhang et al., 2011),
and the output was converted to volumetric parametric maps for NDI
and ODI. All NDI and ODI outputs were verified by inspecting the error
code file to ensure no errors occurred during the fitting process.
NODDI maps including NDI and ODI were registered to the popula-
tion-based template using the deformationScalarVolume tool in DTI-
TK. Representative normalised parameter maps from three partici-
pants are shown in Fig. 1.

Region of interest generation

An atlas-based region of interest (ROI) analysis was employed using
the JHU white matter tractography atlas (Wakana et al., 2005)
thresholded at 25%. This atlas comprises 20 white matter tracts
(Fig. 2a): bilateral anterior thalamic radiation (ATR), cingulum cingu-
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