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A B S T R A C T

Graph theory provides a powerful framework to investigate brain functional connectivity networks and their
modular organization. However, most graph-based methods suffer from a fundamental resolution limit that
may have affected previous studies and prevented detection of modules, or "communities", that are smaller than
a specific scale. Surprise, a resolution-limit-free function rooted in discrete probability theory, has been recently
introduced and applied to brain networks, revealing a wide size-distribution of functional modules (Nicolini and
Bifone, 2016), in contrast with many previous reports. However, the use of Surprise is limited to binary
networks, while brain networks are intrinsically weighted, reflecting a continuous distribution of connectivity
strengths between different brain regions. Here, we propose Asymptotical Surprise, a continuous version of
Surprise, for the study of weighted brain connectivity networks, and validate this approach in synthetic
networks endowed with a ground-truth modular structure. We compare Asymptotical Surprise with leading
community detection methods currently in use and show its superior sensitivity in the detection of small
modules even in the presence of noise and intersubject variability such as those observed in fMRI data. We
apply our novel approach to functional connectivity networks from resting state fMRI experiments, and
demonstrate a heterogeneous modular organization, with a wide distribution of clusters spanning multiple
scales. Finally, we discuss the implications of these findings for the identification of connector hubs, the brain
regions responsible for the integration of the different network elements, showing that the improved resolution
afforded by Asymptotical Surprise leads to a different classification compared to current methods.

1. Introduction

The brain is thought to consist of a network of interconnected,
interacting components whose architecture is critical for the emergence
of adaptive behaviors and cognition (McIntosh, 2000). Graph theory
provides a powerful means to assess topology and organization of brain
connectivity networks, like those derived from MRI and other neuroi-
maging methods (Eguíluz et al., 2005; Bullmore and Sporns, 2009).
Within this framework, the brain is represented as a network of n
nodes interconnected by m links. Typically, the nodes correspond to
anatomically defined brain regions and the links to a measure of
interregional interaction or similarity (Bullmore and Sporns, 2009).
For resting state functional connectivity networks, edge weights are
defined as interregional temporal correlations in the fluctuations of the
BOLD signals, and the resulting graph can be represented by a
correlation adjacency matrix. The arcs of structural connectivity net-
works (the “connectome”), conversely, reflect the number of white
matter tracts connecting any two regions. Brain networks have also

been defined on the basis of intersubject anatomical covariance (Evans,
2013), co-activation of different brain regions across individuals
subjected to experimental tasks (Crossley et al., 2013) or pharmacolo-
gical challenges (Schwarz et al., 2007, 2008). All of these networks are
“weighted” by definition, i.e. their edges are associated with real
numbers representing a measure of the strength of pairwise interac-
tions between nodes.

Graph-theoretical analysis of these networks has contributed sub-
stantially to our understanding of the topological organization of brain
connectivity, revealing a small-world, rich-club structure (Eguíluz
et al., 2005; van den Heuvel and Sporns, 2011) and the presence of
hub regions characterized by high connectivity and network centrality.
Additionally, a number of studies (reviewed in Bullmore and Sporns
(2009) and van den Heuvel and Hulshoff Pol (2010)) have investigated
the modular structure of brain connectivity networks, highlighting
cohesive clusters of nodes that are more densely connected among
themselves than with the rest of the network. In the graph-theory
jargon, these disjoint clusters are sometimes dubbed “communities”,
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remnant of early investigations in the field of social sciences (Girvan
and Newman, 2002).

Topological modularity is thought to reflect functional and anato-
mical segregation, a feature that may confer robustness and adaptivity
to brain networks. Moreover, the degree of clustering within functional
connectivity graphs may provide a measure of the balance between
segregation and integration underlying brain function (Bullmore and
Sporns, 2009). Finally, the identification of modules and their bound-
aries is important to understand the topological function of hub regions
within the network (Meunier et al., 2010). Indeed, hubs sharing a large
number of within-module edges may be critical to determine segrega-
tion of sub-structures within the network, while hubs connecting
different modules are responsible for network integration (van den
Heuvel and Sporns, 2013). It has been suggested that hub regions may
have increased susceptibility to the effects of brain disorders (Crossley
et al., 2014; Buckner et al., 2009), and their correct identification and
classification are important to understand their putative role in the
spread and manifestation of brain disease. Finally, alterations in the
community structure of the brain have been observed in several
neuropsychiatric conditions, including Alzheimer disease (Tijms
et al., 2013), schizophrenia (Stam, 2014) and chronic pain
(Balenzuela et al., 2010), and assessment of the brain modular
organization may provide a key to understanding the relation between
aberrant connectivity and brain disease.

Following initial work by Hilgetag et al. (2000), several graph
theoretical methods have been deployed to investigate the modular
structure of brain networks (Meunier et al., 2010, 2010; Power et al.,
2011). Typically, these methods rely on the optimization of a fitness
function that measures the quality of a network partition against that of
an ensemble of randomized networks with similar statistical properties
(the “null model”). Optimization of the fitness function of choice is
often computationally demanding and scales steeply with increasing
network size. Hence, heuristics are needed to calculate nearly optimal
partitions of large networks, like those derived from neuroimaging
data, within reasonable computation time (Blondel et al., 2008; Rosvall
and Bergstrom, 2008).

A seminal finding in graph theory is that clustering methods based
on optimization of a global function suffer from a resolution limit
(Fortunato and Barthélemy, 2007), as they are unable to resolve
modules that are smaller than a scale determined by the size of the
entire network. This problem was first demonstrated for Newman's
Modularity (Newman, 2006), a method included in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) and most frequently
applied to the analysis of neuroimaging data.

Subsequent work by various groups has demonstrated that the
resolution limit is quite pervasive and affects, to a different extent,
many other methods based on optimization of a global fitness functions
(Squartini et al., 2015; Traag et al., 2011; Lancichinetti and Fortunato,
2009), including Reichardt and Bornholdt's (2006), Arenas et al.
(2008), Ronhovde and Nussinov (2009), Rosvall and Bergstrom's
(Infomap) (Rosvall and Bergstrom, 2008; Kawamoto and Rosvall,
2015) and others.

The introduction of a resolution parameter has been proposed as a
means to mitigate the problem by adjusting the resolving power of the
function to a specific scale (Reichardt and Bornholdt, 2006; Ronhovde
and Nussinov, 2010; Thomas Yeo et al., 2011). However, this approach
enables resolution of smaller clusters at the expense of larger ones,
which may be unduly subdivided, thus resulting in partitions with
relatively uniform cluster size distributions that do not capture the
complex modular structure of real-world networks (Lancichinetti and
Fortunato, 2011).

Recently, we have assessed the effects of the resolution limit on the
analysis of brain connectivity networks (Nicolini and Bifone, 2016).
Specifically, we have shown that this limitation severely curtails the
ability to detect small, but functionally and anatomically meaningful
clusters of nodes even when they present high densities of intra-cluster

edges. Moreover, we showed that resolution-limited methods, like
Newman's Modularity, do not reflect the multiple scales of the
organization of brain connectivity networks, where small and large
modules can coexist. We have also demonstrated that Surprise, a
conceptually different fitness function grounded in probability theory,
behaves like a resolution-limit-free function (Nicolini and Bifone,
2016). Maximization of Surprise, based on an algorithm dubbed
FAGSO, revealed a heterogeneous distribution of modules within brain
resting state and coactivation networks. If confirmed, these findings
would suggest that a substantial revision of current models of brain
modular structure may be in order.

A fundamental limitation of Surprise lies in its definition in terms of
discrete probability and binomial coefficients that make it applicable
only to binary networks, i.e. graphs with edge values 1 or 0. This may
represent a substantial drawback, for it requires binarization of brain
connectivity networks, thus discarding potentially important informa-
tion contained in the edge weight distribution. Moreover, different
binarization procedures may lead to different network representations
for the same connectivity dataset. Therefore, an extension of Surprise
to weighted networks would be highly desirable, and would provide a
new and important tool to study the modular organization of brain
connectivity beyond the resolution limit.

Capitalizing on recent development in the field of statistical physics
of complex networks (Traag et al., 2015), here we describe and
demonstrate the use of Asymptotical Surprise, a weighted counterpart
to Surprise, in the study of the modular structure of weighted networks.
Moreover, we propose a new algorithm, dubbed PACO (PArtitioning
Cost Optimization) for the maximization of Asymptotical Surprise.

Since there is no ground-truth structure for brain functional
connectivity networks, we have assessed the performance of this novel
approach on synthetic networks with a planted modular structures, and
compared it to some of the leading graph partitioning methods.
Importantly, we demonstrate our approach in networks derived from
synthetic data that mimic different structures, levels of noise and
variability, such as those observed in functional connectivity experi-
mental data. Indeed, improved resolution afforded by Asymptotical
Surprise may imply increased vulnerability to spurious modules
resulting from noisy correlations. It is therefore important to assess
the benefits of increased resolution against the limitations arising from
intrinsic data variability.

Finally, we apply Asymptotical Surprise to weighted functional
connectivity networks from resting state fMRI data, revealing a
heterogeneous, multiscale community structure. We show that the
finer modular subdivision of resting state functional connectivity
networks obtained by Asymptotical Surprise leads to substantial
differences in the identification of connector hubs compared to other
community detection methods.

2. Materials and methods

2.1. Notation

Here we briefly summarize the terminology and the notation that
will be used throughout the paper. A binary graph G V E= ( , ) is a
representation of a set V of n nodes, also called vertices, connected by
m links (or edges), in a set E. The adjacency matrix A a= { }ij of a binary
graph is a square n n× symmetric matrix with elements A = 1ij when
an edge exists between vertex i and j and 0 otherwise. We denote the
total number of possible links in the graph as p = ( )

n
2 .

A weighted graph G V E W= ( , , ) assigns as a set of edge weights W
to the links. For weighted graphs, the adjacency matrix is square,
symmetrical and has real elements.

A clustering ζ ζ= { }c of G is a partitioning of V into disjoint sets of
nodes, ζ V⊆c , which we call modules or communities. Each module
consists of nc nodes, mc edges and p = ( )c

n
2
c pairs of nodes. On
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