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A B S T R A C T

State of the art Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) protocols of white matter followed
by advanced tractography techniques produce impressive reconstructions of White Matter (WM) pathways.
These pathways often contain millions of trajectories (fibers). While for several applications the high number of
fibers is essential, other applications (visualization, registration, some types of across-subject comparison) can
achieve satisfying results using much smaller sets and may be overburdened by the computational load of the
large fiber sets. In this paper we propose a novel, highly efficient algorithm for extracting a meaningful subset of
fibers, which we term the Fiber-Density-Coreset (FDC). The reduced set is optimized to represent the main
structures of the brain. FDC is based on an efficient geometric approximation paradigm named coresets, an
optimization scheme showing much success in tasks requiring large computation time and/or memory. FDC
was compared to two commonly used methods for selecting a reduced set of fibers: fiber-clustering and
downsampling. The reduced sets were evaluated by several methods, including a novel structural comparison to
the full sets called 3D indicator structure comparison (3D-ISC). The comparison was applied to High Angular
Resolution Diffusion Imaging (HARDI) scans of 15 healthy individuals obtained from the Human Connectome
Project. FDC produced the most satisfying subsets, consistently in all 15 subjects. It also displayed low memory
usage and significantly lower running time than conventional fiber reduction schemes.

1. Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a
powerful tool for noninvasive characterization of brain tissues. It maps
the architecture of neural connections by measuring the local orienta-
tion of water molecule diffusion (Prčkovska et al., 2012). Magnitude
and orientation of the diffusion of water molecules in each voxel can be
inferred by computing a diffusion model that best fits the DW-MRI
data. A review of common diffusion model reconstruction techniques
can be found in the literature (e.g., Assemlal et al., 2011). The
reconstructed diffusion function is used by tractography algorithms
in order to create a set of streamlines representing the main pathways
of neuron bundles in the brain (Yamada et al., 2009). Such sets of
streamlines are usually called tractograms or fiber-sets. Modern
reconstruction techniques, in conjunction with sophisticated tracto-
graphy algorithms allow the creation of highly dense fiber-sets com-
prised of up to several millions of fibers. In recent years the use of such

huge fiber-sets has become more common due to several reasons: First
and most important, as the spatial resolution of MRI scanners
increases, so does the number of voxels in the scan result. Hence,
millions of seeds are needed during the tractography process to achieve
good spatial coverage. The result is a fiber-set size of several million
fibers. The coverage issue is relevant also to brain connectivity analysis,
a relatively new field of study in brain science, as was extensively
reviewed by Rubinov and Sporns (Rubinov and Sporns, 2010). In order
to achieve an accurate connectivity matrix on high resolution DW-MRI,
one needs to produce very dense tractograms containing millions of
fibers (Hagmann et al., 2008). Another technique which has recently
gained popularity is the application of Tract-Density Imaging (TDI)
(Calamante et al., 2010). TDI produces super-resolved qualitative maps
of the streamline count (density) at each voxel. In order to achieve TDI
maps with low variability, sets of 5–10 millions of fibers are usually
required (Calamante et al., 2012).

While relatively efficient applications, such as TDI and connectivity
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analysis, are able to process huge sets in reasonable time, other
common operations on fibers cannot handle this load of work. This
includes applications which are based on dissimilarity measurements
between sets of fibers, as well as other complex computations on
individual fibers. Another acute problem accompanying the use of huge
fiber-sets is the overwhelming memory space needed to store these
sets. This also makes rendering of a full fiber-set virtually impossible on
most PCs. Hence, huge fiber-sets, which are becoming more wide-
spread, cannot be used for many brain research applications, without
some sort of initial simplification.

There have been some efforts in recent years to address the issue of
handling huge fiber-sets. One possible approach is to find more
efficient representations for individual fibers. Among others, efficient
representations have been studied by Zvitia et al. (2010) and Presseau
et al. (2015) which performed optimization on the number of samples
along a given fiber and their locations. This optimization significantly
reduces the computation load; however, when dealing with multiple
sets of millions of fibers, this may not be enough for many complex
operations. Presseau et al. also suggested a novel compression format
that in addition to the efficient representation, also includes quantiza-
tion and encoding steps, which greatly reduce the amount of memory
needed to store full fiber-sets. This may be suitable to some of the fiber-
based applications, but since calculations cannot be done on the
compressed form, complex operations still pose a challenge.

Dense fiber-sets contain multiple redundancies in the form of
nearly identical fibers, as shown in Fig. 1. It is therefore possible to
remove redundant fibers and to keep only unique representatives, as a
means to construct a reduced fiber-set.

The reduced fiber-set can be utilized for various purposes:

• It can assist complex algorithms with handling huge number of
fibers, for example in the construction of atlases (Guevara et al.,
2012; Yoo et al., 2015), or in the registration of fiber-sets.

• Visualization purposes: The tremendous amount of memory needed
for handling huge sets inhibits their visualization due to Random
Access Memory (RAM) limitations on most computers. Currently
this is resolved by using aggressively downsampled sets, but this
may lead to a loss of various parts of WM structures, as demon-
strated in Fig. 2.

• Training purposes: Supervised learning frameworks, which involve
complex operations on individual fibers and thus have a limit on the
training set size, may benefit by training on reduced sets that were
intelligently inferred from multiple brain scans.

• Reduced sets can facilitate multi-subject comparisons, in which the
fiber load is multiplied by the number of subjects (e.g. in a multi-
subject comparison framework, (Zimmerman-Moreno et al., 2016)).

Usually, smaller sets are achieved by inferring a subset of fibers
from the full set. The simplest and hence, the most common approach
is to downsample the fiber-set. Downsampling is equivalent to ran-
domly choosing a subset. It may result in losing important information
about the connectivity of the brain. In extreme conditions, parts of
tracts can vanish altogether. This phenomenon is illustrated in Fig. 2.

A zoom-in view on a portion of the original fiber-set is shown in
Fig. 2 (left). Fig. 2 (right) is the result of downsampling the full set by a
factor of 10. Note that the horizontal bundle of fibers (circled) was lost
in the downsampling process.

Recently, several more sophisticated approaches for selecting a
subset of representative fibers were proposed. Gori et al. (Gori et al.,
2016) use an approximation scheme for fiber bundles which results in a
parsimonious representation of weighted prototypes. Prototypes are
chosen to represent groups of similar fibers, and both the fibers and the
prototypes are modeled as weighted currents. Two streamlines are
considered similar if their endpoints are close to each other and if their
pathways follow similar trajectories. The selection of the prototypes is
based on minimization of an approximation error. The resulting
representation was shown to preserve bundle shapes and can be used
to accurately reconstruct the original structural connectivity. While
providing a representation that stores the connectivity information,
this process is still quite complex. The reported computation time is
almost 3 h for the reconstruction of an 80,000 prototype set.

Other sophisticated frameworks are often based on clustering.
Guevara et al. (2011) presented a preprocessing step to be used before
the analysis of huge fiber-sets. First, the set is split according to
location and fiber length. The voxels are clustered into parcels using k-
means and a parcel connectivity matrix is computed according to the
number of tracts passing through each pair of parcels. The parcels are
clustered using Hierarchical Clustering (HC) and fiber bundles are
inferred. Those bundles are further split; centroids are computed and
merged using HC and Hausdorff distance. HC was also used by
Wassermann et al. (2010). They propose to represent the fibers and
fiber bundles as Gaussian Processes, with a similarity measure based
on inner product between Gaussian Processes couples. This similarity
measure does not rely on point correspondences and hence is suitable
for fibers of different lengths. Garyfallidis et al. (2012) developed the
QuickBundles (QB), an efficient clustering method which claims to
overcome the complexity of large fiber-sets and provides informative
clusters. Each QB cluster can be represented by a single centroid
streamline and thus simplify the fiber-set representation. The number
of clusters in QB depends on a predefined maximal intra cluster
pairwise fiber distance; the method has a linear complexity with
respect to the number of fibers. Reichenbach et al. (2015) came up
with the V-Bundles clustering which is also linear in the number of line
segments in the fiber data and can cluster large datasets without the
use of random sampling or complex multi-pass procedures. It copes
with interrupted streamlines and allows multi-subject comparisons.

Several recent works propose methods for selection of subsets of
fibers, not for fiber-set reduction, but rather in order to make the
tractograms more consistent with the underlying neuroanatomy (e.g.,
SIFT (Smith et al., 2013) and COMMIT (Daducci et al., 2015)). These
fiber-filtering methods assign weights to candidate fibers in a large
fiber super-set. The weights are used to filter out unwanted fibers such
that the final fiber density will reflect the true density of underlying
neuronal connections.

In the current work we propose a quick and efficient method for the
reduction of the number of fibers in large, whole-brain tractograms.
The method is based on an innovative paradigm in data science, called
Coresets. The term coreset is used to indicate a set of size c, which is a
representative subset of the full data set. Finding a small representative
subset of objects can be viewed as a geometric approximation problem.
Agarwal et al. (2005) have reviewed several works which employ the
idea of coresets to develop efficient approximation algorithms for
various geometric problems. Among others, coresets were used for

Fig. 1. A fiber and 10 of its closest, almost identical, neighbors. The 10 neighboring
fibers were derived by computing a Cosine distance between the given fiber and all the
other fibers in a fiber-set and collecting the 10 closest ones. The presence of multiple
identical fibers is typical in dense fiber-sets.
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