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A B S T R A C T

Mapping directions of influence in the human brain connectome represents the next phase in understanding its
functional architecture. However, a host of methodological uncertainties have impeded the application of
directed connectivity methods, which have primarily been validated via “ground truth” connectivity patterns
embedded in simulated functional MRI (fMRI) and magneto-/electro-encephalography (MEG/EEG) datasets.
Such simulations rely on many generative assumptions, and we hence utilized a different strategy involving
empirical data in which a ground truth directed connectivity pattern could be anticipated with confidence.
Specifically, we exploited the established “sensory reactivation” effect in episodic memory, in which retrieval of
sensory information reactivates regions involved in perceiving that sensory modality. Subjects performed a
paired associate task in separate fMRI and MEG sessions, in which a ground truth reversal in directed
connectivity between auditory and visual sensory regions was instantiated across task conditions. This directed
connectivity reversal was successfully recovered across different algorithms, including Granger causality and
Bayes network (IMAGES) approaches, and across fMRI (“raw” and deconvolved) and source-modeled MEG.
These results extend simulation studies of directed connectivity, and offer practical guidelines for the use of such
methods in clarifying causal mechanisms of neural processing.

1. Introduction

The advent of network methods stands as a significant development
in human cognitive neuroscience, extending characterization of the
function of isolated brain regions to that of connections between
regions and large-scale networks of regions (Craddock et al., 2013;
Medaglia et al., 2015; Sporns, 2011). To date, this field of network
neuroscience has been dominated by methods of “undirected” func-
tional connectivity, which infer whether two brain regions A and B are
communicating in some general fashion, as typically revealed by the
Pearson's correlation computed between their activity time series
(Biswal et al., 1995; Friston et al., 1997). In contrast, “directed”
functional connectivity (or “effective” connectivity) methods clarify
asymmetries in activity flow that determine whether region A is
communicating downstream to region B (connectivity A→B) or vice
versa (connectivity B→A). Suggested approaches to analyzing directed
connectivity in brain imaging data have included Granger causality
(Roebroeck et al., 2005; Seth, 2010), directed coherence (Nolte et al.,
2008), dynamic causal modeling (DCM; Friston et al., 2003), linear
non-Gaussian (LiNG; Hyvarinen and Smith, 2013), conditional Bayes

(Patel et al. 2006) and Bayes network methods (Mumford and Ramsey,
2014).

Whilst the relative capabilities of the above algorithms to map truly
“causal” or “effective” connections have been debated (Friston, 2011;
Roebroeck et al., 2011), they nonetheless collectively entail a con-
ceptual advance over undirected methods by linking cognitive opera-
tions to more precise computational mechanisms. However, wide-
spread application of directed connectivity has been hampered by a
number of methodological uncertainties, spanning the choice of
imaging modality, directional algorithm, input parameters and pre-
processing steps. These uncertainties call for concerted attempts to
validate directed connectivity, and it is the aim of the present paper to
address this need.

Prior validations have predominantly relied on the recovery of
directional patterns embedded in simulated datasets. Much of this
work has focused on fMRI given its present popularity, and also as it
presents perhaps the clearest challenges to the application of directed
connectivity. Specifically, observed BOLD signals are convolved with
hemodynamic response functions (HRF), and hence offer an indirect,
low-pass filtered, non-linear reflection of neuronal activity. A widely
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cited study by Smith et al. (2011) aimed to address these concerns, by
using a common generative model of the fMRI BOLD response (via the
biophysically plausible Buxton-Friston balloon model; Buxton et al.,
1998; Friston et al., 2000) to simulate a number of fMRI directed
connectivity ground truths. The recovery of these ground truths was
assessed across a variety of directional algorithms. Of these, the
conditional Bayes method devised by Patel et al. (2006) (Patel's tau)
was found to identify directed connections with the highest accuracy,
albeit at an overall modest level (~65%), which raised broader
questions as to the efficacy of applying directed connectivity to fMRI.

Later studies have re-examined the Smith simulations and provide
a more optimistic view. For example, Ramsey et al. (2011), (2014)
highlighted the Smith simulations' omission of algorithms that utilize
multi-subject (i.e. group-level) data to identify directed connections, as
well as the suppression of likely informative non-Gaussian signal
components in their forward model and pre-processing steps. The
authors hence applied their IMAGES (Independent Multiple-Sample
Greedy Equivalence Search; Ramsey et al., 2010) group-level Bayes
network algorithm, to the same Smith fMRI simulations, after removal
of a high-pass Butterworth filter that actively suppressed non-Gaussian
components in the original study. This yielded a marked improvement
in directionality detection accuracy ( > 85%; Ramsey et al., 2011,
2014). Deshpande and Hu (2012) highlighted further issues in the
Smith forward model, which failed to include an explicit delay or lag in
signaling between connected regions at the neuronal level. This might
have contributed to the poor performance of lag-based Granger
causality reported in the Smith simulations. Other fMRI simulations
that included a realistic lag in neural signaling yielded far higher
Granger detection accuracy (Roebroeck et al., 2005; Deshpande et al.,
2010; Wang et al., 2014). The findings of these fMRI simulations
should highlight general limitations of an overreliance on synthetic
approaches to directed connectivity validation. Such simulations make
generative assumptions that are open to debate, and which inevitably
represent a simplification of the complexities of real imaging data.

Attempts to validate directed connectivity methods in MEG/EEG
have been lacking in comparison to fMRI. This likely follows from the
assumption that application of directed connectivity to MEG/EEG is
fundamentally more apt, given their more direct measurement of
neural activation (without complications arising from HRF convolu-
tion), sampled at a higher resolution and across a broader frequency
spectrum. However, these temporal features come at the non-trivial
cost of lower signal-to-noise ratio, increased non-stationarity and lower
spatial resolution (i.e. the “inverse problem” of localizing neural
sources for the raw sensor signal; Schoffelen and Gross, 2009).
Clarifying how to address these unique challenges raises the need for
directed connectivity validations in MEG/EEG as well as fMRI.

To this end, Wang et al., (2014) embedded directional ground
truths in simulated MEG/EEG (via a neural mass model, Moran et al.,
2013) and fMRI data (via the Buxton-Friston balloon model used in the
Smith simulations), and compared the performance of a variety of
directed connectivity algorithms across both modalities. The results
support the efficacy of MEG/EEG directed connectivity analysis across
a number of algorithms, as well as demonstrating comparably high
detection performance in the fMRI simulations (again questioning the
negative findings of the Smith simulations). Whilst these multi-modal
simulations illustrate that convergent directed connectivity patterns
are obtainable in MEG/EEG and fMRI data, clarification on more
practical issues, such as improving signal-to-noise via pre-processing
strategies and insight into appropriate significance testing are lacking.
Similarly, the Wang et al. study failed to distinguish between sensor
and source-level directed connectivity in their MEG/EEG forward
model, and hence sidestepped the issue of “field spread” – the
spreading of activity from a single neural source across proximal
sensors, which has been shown to contaminate undirected connectivity
analyses in MEG/EEG data (especially at the sensor-level; Schoffelen
and Gross, 2009; Hipp et al., 2012).

Extending the undoubtedly useful fMRI and MEG/EEG simulation
work calls for validations of directed connectivity in real data. Such
validations are rare given the difficulty in specifying “empirical ground
truth” directionality patterns in real compared to synthetic data. Whilst
prior empirical directed connectivity studies have yielded interpretable
results, both in fMRI (e.g. Mills-Finnerty et al., 2014; Wen et al., 2012,
2013) and in source-modeled MEG (e.g. Astolfi et al., 2007; Cole et al.,
2010; Supp et al., 2007), these reports did not seek to address
antecedent questions as to the base validity of applying directional
methods to brain imaging data. Of the previous empirical validations,
many focus on testing one specific algorithm, such as Granger causality
(Roebroeck et al., 2005), Bayes network (Ramsey et al., 2014; Plis
et al., 2011), directed coherence (Gómez-Herrero et al., 2008) or DCM
(Bönstrup et al., 2016), rather than the more comprehensive multi-
algorithm validations undertaken by the Smith and Wang simulations.
Perhaps more problematic is that few if any of these prior validations
have clearly formalized an a priori ground truth directed connectivity
pattern with which to evaluate performance.

The over-reliance on simulations and the limited scope of the few
prior empirical validations motivated the present report, which seeks to
adapt the approach of the Smith and Wang simulations to affect a
multi-algorithmic, multi-modal validation of directed connectivity in
real data. We collected fMRI and (anatomically constrained, source-
modeled) MEG data from the same sample of subjects, as they
performed the same associative memory task, involving the cued
retrieval of auditory-visual stimulus pairs (Fig. 1). The design of the
task enabled testing of a common ground truth directed connectivity
pattern that was predicated on widely replicated cognitive neuroscience
findings and known patterns of anatomical connectivity. This capita-
lized on the established “sensory reactivation” effect in episodic
memory research, wherein retrieval of auditory or visual information
reactivates the same regions involved in perceiving those modalities
(Slotnick and Schacter, 2004; Vaidya et al., 2002; Wheeler et al., 2000,
2006). By manipulating whether auditory stimuli cued retrieval of
visual associates (“Aud-Vis” condition) or vice versa (“Vis-Aud” condi-
tion), we sought a ground truth reversal in directed connectivity
between task conditions (i.e. auditory→visual ROI connectivity in the
Aud-Vis condition, and visual→auditory ROI connectivity in the Vis-
Aud condition; see Fig. 2). This ground truth is substantiated by known
anatomical interconnectivity between auditory and visual regions
identified in animals (Cappe and Barone, 2005; Mitani et al., 1985;
Schroeder and Foxe, 2005).

The ground truth was tested in algorithms spanning a diverse set of
assumptions, without any bias or emphasis placed on validating a given
algorithm (or imaging modality). The tested algorithms can broadly be
categorized as “pairwise”, if they orient on an isolated connection-by-
connection basis (Granger causality, Patel's tau and phase slope index),
or “multivariate”, if they orient individual connections only after
considering all other conditioning relationships amongst the region
time series (IMAGES; see Supplementary Materials for descriptions of
all tested algorithms).1 Note that these selected algorithms span a core
rather than exhaustive set, and were chosen on the basis of being
readily available (i.e. implementable) and previously applied to human
imaging data, whilst still inferring directionality via fairly distinct
mathematical assumptions. Whilst other directional algorithms that
have performed well in prior simulations could also have been
included, we chose to only test these core algorithms so as to fulfill
both our aims – not only to validate the use of directed connectivity
algorithms in human imaging data, but also to highlight the virtue of
the general approach to validating via empirical rather than simulated
“ground truths”. Emphasizing the latter point might encourage future

1 Note that, given recent emphasis on large network graphs for characterizing brain
“connectomes” (Sporns, 2014), we focus on directional algorithms that are not limited to
modeling a small number of regions (unlike, e.g., DCM).
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