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A B S T R A C T

When listening to continuous speech, cortical activity measured by MEG concurrently follows the rhythms of
multiple linguistic structures, e.g., syllables, phrases, and sentences. This phenomenon was previously
characterized in the frequency domain. Here, we investigate the waveform of neural activity tracking linguistic
structures in the time domain and quantify the coherence of neural response phases over subjects listening to
the same stimulus. These analyses are achieved by decomposing the multi-channel MEG recordings into
components that maximize the correlation between neural response waveforms across listeners. Each MEG
component can be viewed as the recording from a virtual sensor that is spatially tuned to a cortical network
showing coherent neural activity over subjects. This analysis reveals information not available from previous
frequency-domain analysis of MEG global field power: First, concurrent neural tracking of hierarchical linguistic
structures emerges at the beginning of the stimulus, rather than slowly building up after repetitions of the same
sentential structure. Second, neural tracking of the sentential structure is reflected by slow neural fluctuations,
rather than, e.g., a series of short-lasting transient responses at sentential boundaries. Lastly and most
importantly, it shows that the MEG responses tracking the syllabic rhythm are spatially separable from the MEG
responses tracking the sentential and phrasal rhythms.

Introduction

In the human language, smaller linguistic units such as syllables
and words can be recursively combined into larger linguistic structures
such as phrases and sentences. How linguistic units of different sizes
are represented in the brain is a fundamental question in cognitive
neuroscience (Buiatti et al., 2009; Everaert et al., 2015; Garrett et al.,
1966; Pallier et al., 2011; Peña and Melloni, 2012; Townsend and
Bever, 2001). It is shown that when listening to continuous speech,
cortical activity recorded by magnetoencephalography (MEG) and
electroencephalography (EEG) follows the rhythms of acoustic features
of speech that are related to syllabic and phonemic level processing (Di
Liberto et al., 2015; Ding and Simon, 2012a, b; Gross et al., 2013;
Kayser et al., 2015; Kerlin et al., 2010; Luo and Poeppel, 2007).
Recently, it is further shown that cortical activity can concurrently
follow higher level linguistic structures such as phrases and sentences
using speech materials illustrated in Fig. 1a (Ding et al., 2016).

Neural tracking of phrasal and sentential structures, however, was
only characterized in the frequency domain by analyzing the global
field power, leaving several questions unanswered. First, when cortical

activity become entrained/synchronized to the phrasal and sentential
rhythms, how long does it take for entrained activity to reach a steady
state? The buildup timecourse of entrained activity depends on at least
2 factors. First, it depends on the dynamic properties of the underlying
neural sources. For example, the auditory Steady State Response
(aSSR) to a sound repeating at 40 Hz builds up in ~300 ms, after
~12 cycles of the stimulus (Ross et al., 2002). Second, it depends on
how much time the brain needs to parse the temporal structure of the
input. For example, the aSSR may take up to 4 s to build up when the
periodic stimulus is interfered by competing sounds (Elhilali et al.,
2009). Here, we employ language materials that are easy to parse to
focus on the buildup process constrained by the dynamical properties
of the underlying neural network.

Second, frequency-domain analysis does not directly illustrate the
response waveform. Therefore, it is not intuitive whether the senten-
tial-rate response continuously changes over the timecourse of a
sentence (Fig. 1b) or whether it only shows an abrupt change at
sentential boundaries (Fig. 1c). If the neural response is a continuously
changing slow oscillation, it could be interpreted as an integrator that
accumulate information over the timecourse of a sentence (Pallier
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et al., 2011). In contrast, if the neural response is a short-lasting
transient response at structural boundaries, it is more appropriately
interpreted as a change/boundary detector.

Third, previous frequency-domain analysis was based on the global
field power of MEG, leaving it unclear whether the neural tracking of
different linguistic levels can be spatially separated using MEG? To
answer the above mentioned 3 questions, we apply a time-domain
analysis of MEG responses. Furthermore, although previous studies
assume that the sentential- and phrasal-rate neural responses are
entrained, i.e., phase locked, to the stimulus but the degree of phase
locking is not quantified. Here, we quantify the consistency of the
neural response phases over subjects by calculating the inter-subject
phase coherence (Fisher, 1993).

A time-domain analysis of MEG responses, however, is difficult for
several reasons. First, each neural generator, i.e. a current source,
produces a source/sink pattern in the MEG signal. The MEG signals
from the source and the sink have opposite polarities and the spatial
locations of the source and sink patterns are not aligned across subjects
due to the anatomical differences and the subjects’ head position inside
the MEGmachine. Second, there are usually multiple neural generators
contributing to the neural tracking of a continuous stimulus and these
neural generators could have different response phases due to their
positions in the neural processing hierarchy or their neurodynamical
properties. As a result, if the macroscopic MEG responses are
dominated by different neural generators in different subjects due to
anatomical differences, they will show phase differences across sub-
jects. Lastly, the MEG signal is a mixture of the responses from
multiple neural generators and component analysis methods, such as
the principal component analysis (PCA), independent component
analysis (ICA), and denoising source separation (DSS), are often
employed to separate different neural sources. The polarity of the
response waveforms extracted by the component analysis, however, is
usually arbitrary, which further increases the difficulty for grand
averaging the response waveforms across subjects.

Although it is difficult to align the response phase across subjects in
MEG, recent studies have shown that the neural response phase is
relevant to perception (Henry and Obleser, 2012; Lakatos et al., 2008;
Schroeder and Lakatos, 2009) and shows consistency across subjects
during the processing of continuous natural stimuli (Dmochowski
et al., 2014; Hasson et al., 2012; Hasson et al., 2004; Honey et al.,
2012; Lankinen et al., 2014). For normal listeners, during speech
comprehension, it is reasonable to assume and empirical studies
support that common neurophysiological processes underlie the pro-
cessing of the same unambiguous sentence.

To optimally extract neurophsyiological processes that are common
across subjects, we propose an analysis method called the Inter-Subject
Coherent Component Analysis (ISCCA). The ISCCA decomposes the
multi-channel MEG recordings of each subject into components and
maximizes the inter-subject correlation of each component. Each
ISCCA component is extracted by a spatial filter and can be viewed
as the recording from a virtual sensor spatially tuned to a cortical
network that shows coherent neural activity over subjects. The ISCCA
spatial filters are subject-specific and normalize individual differences
in response topography. Since the ISCCA components are maximally
correlated over subjects, they can be directly averaged for group level
analysis. As an illustration, Fig. 2 shows that responses may have very
different amplitude and polarity in different channels in the sensor
space. However, when the responses are projected to the ISCCA space,
responses that show coherence over subjects are attributed to the same
ISCCA component with the same polarity, which facilitates group-level
analysis of the response waveform.

In the following, we apply the ISCCA to extract MEG response
components that have a coherent response waveform over subjects and
analyze the time course of neural tracking of linguistic structures based
on the grand averaged response waveform.

Materials and methods

Experimental procedures

Sixteen healthy young adults participated in the experiments and
the data analyzed here were previously reported by Ding et al. (2016).
In the experiment, the subjects listened to an isochronous sequence of
syllables. These syllables were ordered so that neighboring 4 syllables
constructed a sentence (Fig. 1a). Each sentence was composed of a
noun phrase (2 syllables) followed by a verb phrase (2 syllables). The
syllables were presented at a constant rate of 4 Hz and no pause was
inserted between phrases or sentences. Therefore, the sentences were
presented at 1 Hz and the phrases were presented at 2 Hz.

In each trial, 40 syllables were played and 28 trials were collected.
To ensure attention, the subjects were instructed to detect semantically
abnormal sentences such as “green frogs drove cars” by a button press
at the end of the trial. Eight trials contained abnormal sentences and
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Fig. 1. Linguistic structure of the stimulus (a) and possible neural responses (b-c). (a) A
sequence of Chinese syllables are presented isochronously at 4 Hz. Examples in English
are also shown for illustrative purposes. All syllables are independently synthesized by a
computer. Two syllables construct a phrase and two phrases construct a sentence.
Therefore, the syllables, phrases, and sentences are presented at 4 Hz, 2 Hz, and 1 Hz
respectively. This figure is adapted from Ding et al. (2016). (b-c) Two hypotheses about
how cortical activity follows the sentential rhythm, whether it continuously changes over
time (b) or occurs only briefly at sentential boundaries (c).
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Fig. 2. Illustration of the basic function of the Inter-Subject Coherent Component
Analysis (ISCCA). The ISCCA decomposes the multi-channel recordings from individual
subjects into components, by maximizing the correlation between response waveforms
across subjects. In this illustration, a 4-channel recording was simulated for 3 subjects.
Each recording is a mixture of an early response, a late response, and white noise. The
late response has the same waveform across subjects and is captured by the first ISCCA
component. The waveform of the early response slightly varies across subjects and is
captured by the second ISCCA component. The noise signal is captured by the 3rd and
the 4th ISCCA components. The early response is simulated by a sawtooth signal. Its
phase is identical within each subject across channels but varies across subjects. Both the
early and the late responses have random polarity and amplitude in each channel. In this
illustration, since the data have only 4 channels, the DSS dimension reduction step is
omitted and the mCCA is applied to the 4-channel data directly.
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