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A B S T R A C T

Diffusion-weighted imaging (DWI) facilitates probing neural tissue structure non-invasively by measuring its
hindrance to water diffusion. Analysis of DWI is typically based on generative signal models for given tissue
geometry and microstructural properties. In this work, we generalize multi-tissue spherical deconvolution to a
blind source separation problem under convexity and nonnegativity constraints. This spherical factorization
approach decomposes multi-shell DWI data, represented in the basis of spherical harmonics, into tissue-specific
orientation distribution functions and corresponding response functions, without assuming the latter as known
thus fully unsupervised. In healthy human brain data, the resulting components are associated with white
matter fibres, grey matter, and cerebrospinal fluid. The factorization results are on par with state-of-the-art
supervised methods, as demonstrated also in Monte-Carlo simulations evaluating accuracy and precision of the
estimated response functions and orientation distribution functions of each component. In animal data and in
the presence of oedema, the proposed factorization is able to recover unseen tissue structure, solely relying on
DWI. As such, our method broadens the applicability of spherical deconvolution techniques to exploratory
analysis of tissue structure in data where priors are uncertain or hard to define.

1. Introduction

Diffusion-weighted imaging (DWI) is a non-invasive magnetic
resonance imaging technique with the unique ability to probe tissue
microstructure in vivo, by measuring its hindrance to water diffusion
(Le Bihan et al., 1986). The water diffusion process is sensitive to the
cellular structure of the surrounding tissue, in particular the presence
of cell membranes and intracellular organelles (Beaulieu, 2002). DWI
is applied in both neuroscientific research and clinical practice, for
studying brain organization, detecting pathology, and measuring dis-
ease progression.

The DWI signal can be represented in many ways, including the
spherical harmonics (SH) basis (Frank, 2002) and the cumulant
expansion (Kiselev, 2010) of which diffusion tensor imaging (DTI)
(Basser et al., 1994) is a special case. Parameters such as fractional
anisotropy (FA) introduced in the context of such signal representa-

tions are sensitive to changes in the underlying tissue microstructure.
However, their interpretation at the cellular level is less straightfor-
ward.

In an effort to provide more specific measures, a myriad of models
have been introduced that relate the measured signal to neural tissue
structure. These models typically decompose the diffusion signal into
cellular compartments, such as intra- and extra-axonal space or free
water (Panagiotaki et al., 2012), weighted by their respective volume
fractions. Similarly, nonnegativity-constrained spherical deconvolution
(CSD) adopts a single fibre compartment of fixed anisotropy, the fibre
response function (RF), which contributes linearly and independently
to the DWI signal across all fibre orientations in the voxel (Tournier
et al., 2004, 2007). Deconvolution then facilitates estimating the
orientation distribution function (ODF) of fibres in that voxel, a metric
of apparent fibre density in white matter (Raffelt et al., 2012;
Dell'Acqua et al., 2013). CSD was later extended to multi-tissue (MT-
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)CSD (Jeurissen et al., 2014), which incorporates partial voluming with
adjacent tissues that are not adequately modelled by the fibre response
function (Parker et al., 2013; Roine et al., 2014). Each tissue compart-
ment is then characterized by a fixed response function, assumed to be
known a priori.

This work generalizes MT-CSD to a blind source separation
problem, akin to nonnegative matrix factorization (NMF) (Paatero
and Tapper, 1994; Lee and Seung, 1999; Wang and Zhang, 2013).
NMF decomposes each input vector as a nonnegative linear combina-
tion of unknown source vectors. Similarly, our approach expands the
diffusion signal in a basis of response functions, adapted to the tissue
structure and to the DWI data at hand. The resulting components can
be associated with different normal tissue types and certain types of
pathology. As such, our method strikes a balance between signal
representation and tissue modelling: it seeks a decomposition that
closely represents the data, subject to minimal constraints that give
structural interpretation to the component basis functions.

In addition, this method addresses a very practical problem
regarding multi-tissue CSD, namely estimating response functions
from the data at hand. Originally, white matter (WM) fibre response
functions were fitted to the DWI data in a single-fibre mask of high FA,
after reorientation of the diffusion tensor eigenvectors (Tournier et al.,
2004, 2007). Alternative recursive approaches have been introduced,
which segment single-fibre voxels and reorient the data based on the
peaks of the fibre ODFs iteratively (Tournier et al., 2013; Tax et al.,
2014), or which calibrate the kernel anisotropy in each voxel separately
under sparsity constraints (Schultz and Groeschel, 2013). However,
these techniques do not directly generalize to other tissue types, such as
grey matter (GM) and cerebrospinal fluid (CSF). Current literature
therefore relies on tissue segmentation of T1-weighted images (T1) to
define GM and CSF kernels, which requires the T1 to be aligned to the
DWI data (Jeurissen et al., 2014). As this is rarely the case in practice,
direct DWI tissue segmentation methods have been introduced in-
dependently and simultaneously, based on sparsity-constrained NMF
(Jeurissen et al., 2015) or convexity-constrained NMF (Christiaens
et al., 2015b, Appendix A) of the isotropic mean DWI signal per shell.
These methods circumvent T1 requirement and are thus applicable in
any reference frame without external input, but still rely on the
diffusion tensor model for reorienting the DWI data in each single-
fibre voxel. Here, we account for the full anisotropy of the DWI signal
by extending NMF to convolution in spherical harmonics.

In related work, Xie et al. (2011) applied NMF to single-shell
diffusion tensor data. Reisert et al. (2014) have introduced a more
general dictionary learning method that imposes sparsity on the tissue
ODFs. In contrast to their approach, we do not impose any constraints
on the ODFs except for nonnegativity. Instead, we constrain the tissue
RFs to be convex combinations of the data voxels. As such, physical
plausibility of the tissue responses is ensured in a purely data-driven
manner.

Extending our previous conference paper (Christiaens et al.,
2015a), we made improvements to the initialization, the optimization,
and the convergence criterion, improving the overall performance and
speed of the algorithm. The accuracy and precision of our convexity-
and nonnegativity-constrained spherical factorization (CNSF) techni-
que are evaluated in Monte Carlo simulations at various noise levels. In
addition, we include results on healthy brain data, both in vivo and ex
vivo, and in the presence of pathology, and show that the decomposi-
tion can be associated to known anatomy.

2. Method

2.1. Multi-tissue spherical deconvolution

Multi-tissue spherical deconvolution (Tournier et al., 2007;
Jeurissen et al., 2014) assumes linear partial volume effect (PVE) to
decompose the DWI signal into n tissue components, each of which is

the spherical convolution of a response function (RF) and an orienta-
tion distribution function (ODF). The response function is an axially
symmetric function H θ( )t b, that characterizes the signal anisotropy and
attenuation across b-values for each component t. Each RF is assumed
to be spatially-invariant. The ODF F θ ϕ( , )t is a nonnegative function on
the sphere that determines the local directionality and density of that
particular component in the voxel. As such, the diffusion signal S g( )b in
each voxel, for gradient direction g and given b-value, becomes

∑S H Fg g( ) ≈ ( * )( ).b
t 1

n

t b t
=

,
(1)

All functions are commonly represented in the basis of real, symmetric
spherical harmonics (SH) of maximum order ℓmax (Tournier et al., 2007;
Descoteaux et al., 2009; Jeurissen et al., 2014). As such, the convolution
reduces to a multiplication of the coefficients of corresponding order ℓ,
i.e., s m h f m(ℓ, ) = ∑ (ℓ) (ℓ, )b t

π
t b t

4
2 ℓ + 1 , with ℓ ∈ {0, 2,…,ℓ }max and

m ∈ [−ℓ, ℓ]. The response functions are axially-symmetric, and therefore
constrained to the spherical harmonics of phase m=0, known as zonal
spherical harmonics.

For this work, we structure the SH coefficients of the DWI signal in
tensor S , indexed by the voxel v and shell b, and rewrite (1) as

In this equation, H contains the zonal SH coefficients of the response
functions, indexed by component t and shell b. F contains the SH
coefficients of the ODFs, indexed by voxel v and component t. The
operator ⊛ is introduced to denote spherical convolution in the SH
basis, and corresponds to the matrix product of every slice F m·,·,(ℓ, ) with
slice H·,·,ℓ of corresponding order ℓ. Note that the ℓ = 0 coefficients of F
represent the isotropic volume fraction or density of each tissue.

2.2. Convexity- and nonnegativity-constrained spherical
factorization

Considering both the response functions H and the ODFs F as
unknown, expression (2) can be seen as an NMF or blind source
separation problem, in which a data matrix is decomposed as the
product of a source matrix and a nonnegative weight matrix (Paatero
and Tapper, 1994; Lee and Seung, 1999; Wang and Zhang, 2013). In
this case, the unknown sources are the response functions of separate
components, the weights are the associated ODFs, and we aim to find

H F S H F A f, = arg min ∥ − ⊛ ∥ s.t. ≥0.
H F

F v t
⋆ ⋆

( , )
2

, ,· (3)

The matrix A evaluates the SH basis across a dense set of directions, to
impose nonnegativity of the estimated ODFs denoted by vector slices
fv t, ,·. The vector fv t, ,· thus contains the SH coefficients F at index (v,t) for
all m(ℓ, ). The only parameters in this framework are the number of
components n and the maximal harmonic order ℓmax of each compo-
nent.

However, the solution to (3) is not unique. As illustrated in Fig. 1,
the response functions H span a n-gonal simplicial cone in the high-
dimensional data space, radiating outwards from the origin 0. Only
voxels “within” this cone are represented exactly; data points “outside”
this cone give rise to the residual under minimization in (3). As such,
any combination of RFs that envelops all observed data points gives
rise to a zero residual, but may not necessarily be physically mean-
ingful. Therefore, we impose a convexity constraint (Ding et al., 2010),
which ensures that all sources Ht are a convex combination of the
measured signal S after reorientation. In other words, the convexity
constraint ensures that all response functions are observed in the data,
typically in voxels with low PVE in both spatial and angular domains.
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