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A B S T R A C T

Diffusion Spectrum Imaging (DSI) has been used for tractography in several publicly available software and a
number of recent high impact publications. However, there are several important theoretical, numerical and
practical considerations that are often ignored. We revisit the theoretical and state-of-the-art processing
steps necessary to go from the DSI signal to the diffusion orientation distribution function (dODF) used by
tractography. We show that the parameters in the reconstruction have huge impact on the reconstruction
quality and that, while there is no consensus about what they should be, the parameters we most often
see in the literature are not optimal. We provide applicable recommendations that improve the accuracy of
extracted local orientations and improve accuracy of global connectivity as measured by the Tractometer, a
tractography online evaluation system. These recommendations come for “free” as they are applicable to all
existing DSI data and do not require a significant increase in computation time. Hence, this paper highlights
the do’s and dont’s of DSI reconstruction.

© 2016 Elsevier Inc. All rights reserved.

Introduction

In recent years, Diffusion Spectrum Imaging (DSI) has often been
referred to as the gold standard technique to reconstruct the dif-
fusion orientation distribution function (dODF). Although requiring
a long acquisition scheme, it was successfully used in recent high
impact and pioneer connectomics works (Hagmann et al., 2008;
Honey et al., 2009). It was also at the center of Wedeen et al.’s Science
publication (Wedeen et al., 2012), which was followed by a debate
with Catani et al. (Catani et al., 2012; Wedeen et al., 2012). Further-
more, DSI is one of the protocols used in the MGH-UCLA Human
Connectome Project (HCP)1 (Wedeen et al., 2008). This has led
to an increased use of the diffusion orientation distribution
function (dODF) computed from DSI. However, DSI, as described in
Wedeen et al. (2005) and Hagmann et al. (2007), has several impor-
tant theoretical, numerical and practical considerations that have
mostly been overlooked. In particular, we show that DSI as it is
implemented in most available reconstruction software (Diffusion
Toolkit2 (Wang et al., 2007) and DSI Studio3 ) is not optimal. In the
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past, advances in diffusion MRI local reconstruction methods, such
as Diffusion Tensor Imaging (DTI) (Basser et al., 1994), Q-Ball Imag-
ing (QBI) (Aganj et al., 2010; Descoteaux et al., 2007; Tuch, 2004)
or Constrained Spherical Deconvolution (CSD) (Descoteaux et al.,
2009; Tournier et al., 2007, 2004), have been focused on i) validating
the soundness of the models (Tournier et al., 2008), ii) mathemat-
ically constraining them to better represent physical limitations
(Arsigny et al., 2006; Pennec et al., 2006; Tournier et al., 2007)
and iii) cornering their pitfalls (Jones and Cercignani, 2010;
Parker et al., 2013). However, DSI seems to have slipped through
this thorough evaluation process. One could argue that the lack of
freely available DSI data until recently1 combined with the lengthy
acquisition protocol may have led to this status.

This work highlights the do’s and dont’s of DSI by addressing
the DSI limitations and revisiting the theoretical and state-of-
the-art processing steps of the DSI reconstruction. The paper
proposes a list of recommendations to perform better DSI, which
produces dODFs that better represent the underlying white matter
structure to increase tractography accuracy and thus increase global
connectivity accuracy. The contributions are three-fold: 1) revisiting
the theoretical foundations of DSI, 2) investigating the steps used
to go from the DSI signal to the dODF and 3) giving recommenda-
tions for DSI processing to produce better dODFs without significant
computation time increase. The suggested improved DSI reconstruc-
tion has the advantage of being applicable to all existing DSI data and
future DSI data using the same MRI protocol.
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Theory

Diffusion-weighted (DW) imaging is a technique that aims to
non-invasively recover information about the diffusion of the water
molecules in biological tissues (LeBihan et al., 1986). We can quantify
the water diffusion by estimating the displacement of the parti-
cles using the pulsed gradient spin-echo (PGSE) sequence (Stejskal
and Tanner, 1965). The relationship between the diffusion signal
attenuation, E(q), in q-space and the diffusion propagator, P(R),
in real space, is given by a Fourier transform (FT) relationship4

(Callaghan, 1991; Ozarslan et al., 2009) such that

EAP:=P(R) =
∫

q∈R3

E(q)e2piq • R dq, (1)

where E(q) = S(q)/S0, where S(q) is the diffusion signal measured at
position q in q-space, and S0 is the baseline image acquired without
any diffusion sensitization (q = �0). We denote q = |q| and q = qu,
r = |R| and R = rv, where u and v are 3D unit vectors. The wave
vector q is q = cdG/2p, with c the nuclear gyromagnetic ratio of
the hydrogen nucleus and G = gu the applied diffusion gradient
vector, assuming a rectangular gradient pulse. The norm of the wave
vector, q, is related to the diffusion weighting factor (the b-value),
b =4p2q2t, where t = D − d/3 is the effective diffusion time with d

the time of the applied diffusion sensitizing gradients and D the time
between the two pulses for the PGSE sequence. We can measure the
approximation of the diffusion propagator by taking the ensemble
average over the imaging voxel, hence the name Ensemble Average
Propagator (EAP). The EAP is the full 3D displacement probability
function of water molecules, which faithfully characterizes the water
diffusion phenomenon. Note that the Fourier relationship between
the EAP and the diffusion signal of Eq. (1) is strictly valid only if the
narrow pulse condition is met, which is rarely the case for in vivo
3D q-space MRI. However, the violation of this condition induces a
convolution over a range of diffusion times in the measurements,
preserving the large-scale structure and orientation of the inferred
propagator (Alexander et al., 2002).

Many recent techniques have been proposed to recover the
EAP. These can be generally separated between signal modelling
(Assemlal et al., 2009; Cheng et al., 2010; Descoteaux et al., 2011;
Ghosh and Deriche, 2012; Hosseinbor et al., 2013; Jian et al., 2007;
Özarslan et al., 2009, 2006) and model-free techniques (Gramfort
et al., 2014; Lin et al., 2003; Menzel et al., 2011; Paquette et al.,
2014; Vemuri et al., 2012; Wedeen et al., 2005; Wu and Alexander,
2007; Ye et al., 2012). The generic approach of signal modelling is
to fit one or a sum of continuous functions to the diffusion signal
and then solve Eq. (1) analytically to obtain the EAP. That EAP will
be represented by a linear transform of coefficients of the signal.
For model-free techniques, Eq. (1) has to be discretely approxi-
mated in some way and the resulting EAP will be discrete. Even for
these advanced techniques recovering the full diffusion propagator,
the diffusion orientation distribution function (dODF) remains an
object of high interest for its use in tractography since its maxima
correlate well with the orientation of the underlying structure. The
dODF is obtained by integrating the EAP over the radius in spherical
coordinates (Eq. (2)):

dODF:=X(0, h) =

∞∫
0

P(0, h, r)r2 dr (2)

4 There is a widespread error in the DSI literature, where the Fourier transform
between EAP and signal is given with a negative sign in the exponent. This is possibly
originating from some of the more fundamental works on diffusion MRI. For a detailed
description of this issue with a discussion on its consequences, see (Ozarslan et al.,
2009).

Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2005) is part of
the model-free category, the EAP P(R) is obtained directly by taking
the inverse discrete Fourier transform (iDFT) of E(q). In order to do so,
the q-space has to be sampled in a grid-like manner. This Cartesian
discretization of q-space naturally leads to artefacts when dealing
with the phenomenon of water diffusion which has strong angular
features. Fig. 1 shows the non-uniform angular coverage of the DSI
scheme when projected on the sphere. In comparison, recent tech-
niques (Caruyer et al., 2013) can be used to assure uniform angular
coverage for multiple b-value shell acquisitions.

Diffusion Spectrum Imaging (DSI) revisited

The classical DSI acquisition scheme (DSI515) (Wedeen et al.,
2005) is comprised of q-space points of a cubic lattice within the
sphere of five lattice units in radius, leading to 515 diffusion mea-
surements (Fig. 1). This is the default DSI grid resulting in a DSI signal
living on an 11 × 11 × 11 Cartesian grid.

In theory, we only need to take the inverse Fourier transform of
the signal to obtain the EAP and then do a radial integration to obtain
the dODF (discretization of Eqs. (1) and (2)). However, in practice, to
compute an dODF from the 11 × 11 × 11 Cartesian grid DSI signal,
more steps are involved. Unfortunately, these steps are rarely studied
in DSI publications (Hagmann et al., 2007; Lin et al., 2003; Wedeen et
al., 2005) and have been mostly overlooked. They are however very
important to obtain an accurate dODF for tractography.

Numerical DSI reconstruction steps
The DSI reconstruction steps include numerical discretization,

q-space truncation, low-pass filtering, interpolation, zero-padding and
real space radial truncation. These steps are detailed in Eqs. (3a),
(3b), (3c), (3d) and (3e). One can appreciate how these steps heav-
ily deviate from the continuous q-space formula of Eqs. (1) and (2).
These numerical implementation steps cannot be ignored as mere
discretization related operations and lead to well-known Fourier
theory artefacts, as detailed here:

1) Replace Eq. (1) in Eq. (2)

X(0, h) =
∫
r∈R

r2

⎡
⎢⎣ ∫

q∈R3

E(q)e2piq • R dq

⎤
⎥⎦ dr (3a)

2) q-space truncation at qmax:

X(0, h) ≈
∫
r∈R

r2
∫

|q|≤qmax

|E(q)|e2piq • R dq dr (3b)

3) Apply low-pass filter (K(b)) and zero-pad the grid to size
L × L × L (ZL{.}) before inverse Fourier transform (iFFT):

X(0, h) ≈
∫
r∈R

r2 iFFT[ZL{|EDSI(q)| • K(b)}] dr (3c)

4) Interpolation of the EAP grid onto a spherical grid (I0,h,Dr{.})
and discretization of the radial sum inside the grid
([0, �L/2�]):

X(0, h) ≈
∑

r∈[0,�L/2�],Dr

r2 I0,h,Dr{iFFT[ZL{|EDSI(q)| • K(b)}]}

(3d)
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