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There is a real need in the neuroscience community for efficient tools to compare Diffusion TensorMagnetic Res-
onance Imaging across cohorts of subjects. Most studies focus on the comparison of scalar images such as frac-
tional anisotropy or mean diffusivity. Although different statistical frameworks have been proposed to
compare the whole diffusion tensor information, they are still seldom used in neuroimaging studies. In this
paper, we investigate on both simulated and real data whether there is a real added value of considering the
whole tensor information for conducting voxel-based group studies. Then, we compare two statistical tests ded-
icated to tensor, namely the Cramér test and a tensor-based extension of the General Linear Model (GLM), the
latter presenting the advantage to account for covariates. We also evaluate the impact of different metrics
(Euclidean, Log-Euclidean and affine-invariant Riemannian metrics) for estimating the GLM parameters. Finally,
we address the problemof interpreting the change detectionmaps obtained by tensor-basedmethods by proposing
a way to characterize each of the detected clusters according to several scalar indices. Our study suggests that if
there is no prior assumption about the nature of the expected changes, it is really preferable to use tensor-based
rather than scalar-based statistical analysis. The Cramér test can advantageously be usedwhen no confounding var-
iable hampers the group comparison, otherwise the GLM should be considered. Finally, the different metrics show
similar performance in the real scenario, with a significant computational overhead for the Riemannian framework.
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Introduction

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows cli-
nicians and neuroscientists to investigate the white matter structure
by probing water molecule diffusion. Group studies allow to find out
brain regions that are statistically different between two populations
or that are significantly correlated with some covariates. As a conse-
quence, there is an increasing need for efficient tools to compare DT-
MRI across cohorts of subjects according to clinical or cognitive data.
This may help to characterize the damages caused by a pathology and
to understand the mechanisms underpinning the disease. Group com-
parisons of DT-MR images are usually performed using either region-
of-interest-based analysis, tract-based analysis, or voxel-based analysis
(Cercignani, 2010). In this paper, we will focus on voxel-based analysis,
whose major interest is that it does not make any assumption on the
spatial location of the expected changes.

Most voxel-based studies focus on the comparison of scalar images
derived from DT-MRI such as Fractional Anisotropy (FA) or Mean Diffu-
sivity (MD) using either the voxel-based statistical analysis framework

provided in SPM1 (Penny et al., 2006) or the tract-based spatial statistics
(TBSS)method provided in the FSL library2 (Smith et al., 2006). However,
these methods do not exploit all the information contained in tensor im-
ages and thus cannot detect all kinds of changes. Althoughdifferent statis-
tical frameworks have been proposed to compare either several scalar
indices simultaneously (Chapell et al., 2008), eigenvalues or eigenvectors
of diffusion tensors (Schwartzman et al., 2010), or even the whole diffu-
sion tensor information (Whitcher et al., 2007; Zhu et al., 2009; Yuan
et al., 2012; Kim et al., 2014; Bouchon et al., 2014), they remain seldom
used in neuroimaging studies.

In this paper, we investigate whether there is a real added value of
considering thewhole tensor information as compared to a single scalar
index or several scalar indices simultaneously for conducting voxel-
based group studies. To this end, we consider a tensor-based extension
of theGeneral LinearModel (GLM),which provides a convenientway to
carry out statistical analysiswhile taking into account several covariates.
We evaluate the impact of considering different manifolds for estimat-
ing GLM parameters, namely the Euclidean, Log-Euclidean (Arsigny
et al., 2006) or the Riemannian framework (Pennec, 1999). We also
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provide a comparison with an alternative tensor-based test, namely the
tensor-based Cramér test, which has already been reported as the best
performer among various tensor-based statistical tests (Whitcher
et al., 2007). Finally, we deal with the problem of interpreting the
change detection map obtained by tensor-basedmethods by proposing
a way to characterize each of the detected clusters according to several
scalar indices. To investigate these different points, a simulation frame-
work has been set up, based on DT-MRI acquisitions of healthy subjects
in which different kinds of lesions have been introduced. A group study
on a cohort of patients suffering from neuromyelitis optica (NMO) is
also presented.

The content of the paper is organized as follows. The General
framework for DTI group comparison section depicts the whole frame-
work for DTI group comparison by describing the pre-processing steps,
the spatial normalization, the regression, the statistical analysis and the
characterization of the detected clusters. The evaluation framework is
presented in the Validation framework section. Results on both simulat-
ed and real data are presented in the Results section and discussed in
the Discussion section. Finally, conclusions and perspectives are given.

General framework for DTI group comparison

Overview of the processing pipeline

The goal of voxel-based group comparison is to decide for each voxel
s∈ℝ3 whether there is a significant difference between two groups of
subjects while taking into account some covariates such as age, gender,
etc. To this end, all subjects should first be registered into a common
space according to a deformable registration method (the Spatial
normalization section). A prerequisite to this step is to first control the
quality of each acquisition to assess whether it can be included in the
analysis. This is performed through visual inspection of each DWI
image and by using a dedicated tool, DTIPrep3 (Oguz et al. 2014).
Then, each Diffusion-Weighted Image (DWI) is corrected for subject
motion and eddy current distortions using FSL's Diffusion Toolkit. Final-
ly, tensors are estimated from the DWI images according to a weighted
least square (WLS) estimation procedure (Zhu et al., 2007a).

After the registration step, all tensor images are filtered in the
Log-Euclidean space (Arsigny et al., 2006) using a Gaussian kernel
(FWHM = 8 mm in all our experiments). This allows to account for
the spatial information from the neighboring voxels and also, by the
central limit theorem, to render the data more normally distributed
(Jones et al., 2005). Then, the statistical analysis is conducted.

A convenient way to carry out statistical analysis while taking into
account several covariates is to consider the General Linear Model
(GLM). It can be done either on a given scalar image such as FA or MD,
or on several scalar images simultaneously, or on tensors directly
using either an Euclidean, a Log-Euclidean or a Riemannian metric in
the regression (the Multi-linear regression section). A statistical F-test
is then used to evaluate whether a given explanatory variable has a sig-
nificant contribution in the regression model (the Statistical test sec-
tion). Finally, the statistical map is thresholded and each detected
cluster is characterized by a signature obtained as a combination of
several scalar indices (the Characterization of the detected clusters
section). A graphical overview of the pipeline is presented in Fig. 1.

Spatial normalization

Before performing voxel-based statistical analysis, all images are
first registered on the same arbitrary chosen reference image belonging
to the control group. To this end, all FA images derived from DT-MRI ac-
quisitions are registered through an affine method followed by a non-
rigid method (Noblet et al., 2006) using the sum of squared differences

metric. Spatial transforms are then applied on tensor images using the
Preservation of Principal Direction (PPD) (Alexander et al., 2001) reori-
entation strategy. This step is required to ensure the orientational con-
sistency of the warped tensor field. The basic idea is to apply the local
affine component F of the deformation field on the three tensor eigen-
vectors (e1,e2,e3), and then to estimate the rotation that leads to the
reoriented eigenvectors ð~e1; ~e2; ~e3Þ, such that Fe1 and ~e1 are aligned,
and such that Fe1 and Fe2 span the same plane as ~e1 and ~e2 (Alexander
et al., 2001).

Multi-linear regression

In this section, we will present several regression schemes on either
scalar images or on tensor fields. LetMbe amanifold and {yi}i∈[1..N]∈M
be the observations at a given voxel s∈ℝ3 fromN individuals, each indi-
vidual being characterized byK explanatory variables {xi ,j}j∈[1..K] such as
age, gender or group affiliation. These observations can be either scalar
indices such as FA or MD M⊂ℝ or full tensors M⊂ℝ6. The regression
problem consists in estimating a function f :ℝK↦M that best fits all
the couples ({xi ,1…xi ,K},yi). A simple parametric approach is to consider
the multi-linear function:

yi ¼ α þ β1xi;1 þ β2xi;2 þ⋯þ βKxi;K þ εi ð1Þ

where α is the intercept, βi are the regression coefficients and εi are the
residuals.

For the scalar case, this corresponds to the standard GLM, which is
commonly used in neuroimaging studies (Penny et al., 2006). For the
tensor case, we investigate the use of differentmetrics to compute the re-
siduals, namely an Euclidean (M⊂ℝ6), a Log-Euclidean (M⊂Sym (3))
and a Riemannian (M⊂Sym +(3)) metric, in order to evaluate their im-
pact in the context of group comparison.

Scalar regression
In the scalar case, the General Linear Model (GLM) aims at

representing N scalar observations (FA or MD) Y=[y1…yi…yN]t

as a linear combination of K explanatory variables, whose values
for the ith observation are stored in the design matrix X[i, j]=xi ,j , for i=
1…N and j=1…K. If the residuals εi are assumed to be independent
and identically distributed (i.i.d.) according to a normal distribution,
then the least squares estimate of B is obtained analytically:

B ¼ arg min
B∈ℝK

∥Y−XB∥2 ¼ XtX
� �−1

XtY ð2Þ

The regression methods on scalar images will hereafter be referred
to as General Linear Model for FA (GLM-FA) or for MD (GLM-MD).

Tensor-based regression: Euclidean framework
Scalar regression does not capture all the information embedded in

the diffusion tensor, in particular the orientation information. Thus,
we extended the GLM to take advantage of the full tensor information
(Bouchon et al., 2014).

A 3×3 diffusion tensor matrix is symmetric (∈Sym(3)) and may be
represented by a vector: Di=[Dxx

i Dxy
i Dxz

i Dyy
i Dyz

i Dzz
i ]t∈ℝ6. The

previous regression framework can straightforwardly be extended to
the multivariate case by assuming the noise on the tensor components
to be i.i.d. We also assume equal noise variance for all components
(homoscedasticity assumption4). The basic idea is to concatenate
all tensor components of the N individuals in a single vector
Y∈ℝ6N. For each explanatory variable, six regressors are estimated,
one associated with each tensor component. This is done by
constructing a new design matrix X[i, j]= xi , j, for i=1…N×6 and

3 https://www.nitrc.org/projects/dtiprep/

4 In a previous work, we have also investigated the heteroscedasticity assumption (i.e.,
different noise variances for each tensor component), but our experiments did not enable
us to exhibit any improvement (Bouchon et al., 2014).
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