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ARTICLE INFO ABSTRACT

Article history: Network science offers computational tools to elucidate the complex patterns of interactions evident in neuroim-
Rec‘elved 21 January 2016 aging data. Recently, these tools have been used to detect dynamic changes in network connectivity that may
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from understood. A simple way to interrogate dynamics at different time scales is to alter the size of the time win-
dow used to extract sequential (or rolling) measures of functional connectivity. Here, in n = 82 participants
performing three distinct cognitive visual tasks in recognition memory and strategic attention, we subdivided
regional BOLD time series into variable sized time windows and determined the impact of time window size
on observed dynamics. Specifically, we applied a multilayer community detection algorithm to identify temporal
communities and we calculated network flexibility to quantify changes in these communities over time. Within
our frequency band of interest, large and small windows were associated with a narrow range of network
flexibility values across the brain, while medium time windows were associated with a broad range of network
flexibility values. Using medium time windows of size 75-100 s, we uncovered brain regions with low flexibility
(considered core regions, and observed in visual and attention areas) and brain regions with high flexibility
(considered periphery regions, and observed in subcortical and temporal lobe regions) via comparison to
appropriate dynamic network null models. Generally, this work demonstrates the impact of time window length
on observed network dynamics during task performance, offering pragmatic considerations in the choice of time
window in dynamic network analysis. More broadly, this work reveals organizational principles of brain
functional connectivity that are not accessible with static network approaches.
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Introduction

The use of network science in the field of neuroimaging has led to a
better understanding of the brain as a complex system. This approach
treats the brain as an interdependent network that displays both prop-
erties of local and distributed processing (Bassett and Bullmore, 2006,
Bullmore and Sporns, 2009, Telesford et al., 2011). Network representa-
tions of neuroimaging data have been useful in understanding disease
states including Alzheimer's disease (Supekar et al., 2008, Seeley et al.,
2009), schizophrenia (Calhoun et al.,, 2009, Lynall et al., 2010), and epi-
lepsy (Van Diessen et al., 2013, Khambhati et al., 2015). These diseases
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are now commonly characterized using graph theoretical properties
that describe topological structure, such as community structure
(Porter et al., 2009, Fortunato, 2010), core-periphery structure
(Borgatti and Everett, 2000, Bassett et al., 2013b, Sporns, 2013), and net-
work motifs (Milo et al., 2002). The study of these systems as networks
enables a greater understanding of how patterns of interaction in the
brain support human thought and behavior (Medaglia et al., 2015).

In practice, brain networks are represented as either structural
networks, which include tract tracing (Honey et al., 2007) and diffusion
tensor/spectral imaging (DTI/DSI) (Hagmann et al., 2003, 2007), or
functional networks, which include functional magnetic resonance
imaging (fMRI) (Eguiluz et al., 2005), electroencephalography (EEG)
(Micheloyannis et al., 2006, Stam et al., 2007), magnetoencephalogra-
phy (MEG) (Stam, 2004), and multielectrode array data (Srinivas
et al., 2007). Across these neuroimaging modalities, network-based


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.05.078&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2016.05.078
mailto:dsb@seas.upenn.edu
http://dx.doi.org/10.1016/j.neuroimage.2016.05.078
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg

QK. Telesford et al. / Neurolmage 142 (2016) 198-210 199

techniques can reveal differences between subject groups or between
brain states (Simpson et al., 2013, Zalesky et al., 2012, Ginestet et al.,
2011, Bassett et al., 2012).

Most network-based neuroimaging studies utilize a static brain
network representation, which constructs a network using data from
an entire scan session. In essence, these networks summarize the
strength of functional connectivity between pairs of brain regions over
the period of a scan session. However, many changes in the brain
occur at shorter time scales on the order of milliseconds (for neuronal
activity) or seconds (for cerebral blood flow) (Gonzalez-Castillo et al.,
2014, De Zwart et al., 2005). Static network analyses are agnostic to
these changes occurring at shorter time scales; however, recent interest
in how networks change has led to the development of methods to ex-
amine dynamics in functional connectivity more generally (Hutchison
et al,, 20133, Siebenhiihner et al., 2013), and more specifically in brain
networks (Bassett et al., 2011). The goal of the latter type of investiga-
tion uses a dynamic brain network representation to provide information
about the time-evolving neurophysiological processes that underlie
cognition.

To analyze dynamic networks, a neuroimaging scan session is
subdivided into shorter time intervals or windows and functional
brain networks are derived from each interval. Time windows can
either be overlapping (Hutchison et al., 2013a) or non-overlapping
(Bassett et al., 2011), depending on the desired temporal resolution of
the analysis. Time window analyses have been used for a variety of
dynamic functional connectivity studies in both rest (Sakoglu et al.,
2010, Hutchison et al., 2013b, Gonzalez-Castillo et al., 2014) and task
(Bassett et al., 2011, Hutchison et al., 2013a, Siebenhiihner et al.,
2013) states, revealing transient reconfigurations of brain networks
over time. Sliding time window analyses have also been used in inde-
pendent component analyses (ICA) during tasks (Esposito et al., 2003)
and rest (Kiviniemi et al., 2011). While there have been a variety of
studies using a sliding window for ICA and functional connectivity,
such studies in the context of whole-brain network analysis remain
underexplored. In principal, dynamic network methods could signifi-
cantly improve the sensitivity of whole-brain analyses to detect changes
in network topology that capture changes in cognition and behavior
(Braun et al., 2015).

Here, we examine the ability of dynamic network methods to uncov-
er features of functional brain network reconfiguration across cognitive
states. Specifically, we apply dynamic network analysis using a sliding
window approach with non-overlapping time windows to fMRI data
collected from a sample of 82 healthy adult subjects performing three
different cognitive tasks: a strategic attention task and two recognition
memory tasks with either faces or words as stimuli. These tasks re-
quired dynamic interaction among brain regions to integrate incoming
sensory information with stored knowledge representations, providing
rich spatiotemporal dynamics (Hermundstad et al., 2013). Given these
task requirements, we were particularly interested in understanding
the patterns of functional integration between brain regions and how
they changed during task performance. To study these patterns, we
built on recent work demonstrating that patterns of functional integra-
tion and segregation during task performance can be parsimoniously
summarized in a network's modular architecture (Doron et al., 2012;
Cole et al. 2014; Mattar et al,, 2015). A module is a set of brain regions
that are densely interconnected with one another (functional integra-
tion) and sparsely interconnected with brain regions in other modules
(functional segregation). The dynamics of these modules can be studied
using recently developed network-based clustering techniques (Mucha
et al.,, 2010) that explicitly account for the fact that brain network dy-
namics in one time window are dependent on brain network dynamics
in the preceding and following time windows. These temporal depen-
dencies are represented in a multilayer network framework (Kiveld
et al,, 2014), where the functional brain network in one time window
is linked with the networks in neighboring time windows (Bassett
et al., 2011). This approach facilitates a statistical examination of

temporal variation in functional connectivity patterns (Bassett et al.,
2013b). Further, it enables us to study the dynamics of brain network
function (Bassett et al., 2015), by identifying network communities or
putative functional modules that are coordinated during task-driven
cognitive states (Mattar et al.,, 2015).

To formalize our study, we implement an experimental approach in
which we manipulate two independent measures (time window and
cognitive state), and ask how they impact three metrics of network re-
configuration. The metrics of network reconfiguration are dependent
measures of increasing abstraction, and include community size, flexi-
bility, and core-periphery structure. Intuitively, the first statistic - the
size of communities - reflects the spatial resolution of the underlying
functional network architecture, and is a fundamental statistic of
network dynamics. While the number of communities can provide
information regarding functional grouping of nodes, the transient
nature of communities is better understood using graph statistics that
explicitly quantify community dynamics. Thus, the second statistic we
study is the flexibility of community structure, which explicitly
measures the magnitude of the change in community structure over
the course of the experiment; by counting the fraction of times that a
region changes its allegiance to a functional community. Flexibility has
previously been shown to be an important correlate of learning
(Bassett et al., 2011), cognitive flexibility (Braun et al., 2015), and work-
ing memory function (Braun et al., 2015). Finally, core-periphery anal-
ysis offers a statistically principled approach to identifying a set of
regions that remain relatively rigid in their community allegiance
throughout task performance (the temporal core), and a set of regions
that remain relatively flexible in their community allegiance throughout
task performance (the temporal periphery). In prior work, this notion of
temporal core-periphery structure has offered fundamental insights
into the task-general (flexible periphery) and task-specific (rigid core)
reconfigurations required to produce successful task performance
(Fedorenko and Thompson-Schill, 2014), and the role that rigid versus
flexible regions play in behavioral adaptation (Bassett et al., 2013a,b).

We study these three dependent metrics of network reconfiguration
by manipulating two independent measures. The first independent
measure that we manipulate is the time window used to extract
sequential (or rolling) measures of functional connectivity. The choice
of time window is a key issue in dynamic network methods, and yet
its role in observed properties of brain network reconfiguration is far
from understood (Bassett et al., 2013b). The second independent
measure that we manipulate is the task that the subjects are
performing. Together, this experiment approach enables us to consider
the effects of time window on observed features of functional brain
network reconfiguration across multiple independent measurements
of different brain processes, and to quantify our confidence in those
observed features as well as to inform our understanding of how differ-
ent cognitive tasks are instantiated in flexible versus rigid brain network
dynamics.

Materials and methods
Participants and scanning protocol

The dataset has 82 participants (including 79 males, mean age 35 +
4 (SD) years) taking part in three visual tasks, two recognition
memory tasks and one strategic attention task (Aminoff et al., 2012,
Hermundstad et al., 2013). Stimuli for the two recognition memory
tasks were presented in a pseudo-block format. The stimuli were com-
prised of 360 stimuli of faces or words shown as mini-blocks with 6-9
stimuli shown in sequential trials with 1.5 s and 1 s inter-trial intervals,
respectively. Participants studied 180 items and were tested on a 50/50
mixture of old and new items; 180 fixation trials were intermixed
throughout the session, in which a ‘4’ symbol was displayed on-
screen for 2.5 s. The strategic attention task consisted of two 112 trial
experimental blocks with random inter-trial intervals ranging from
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