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Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction
methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic
tractographyyields sparse connectomes that are incomplete and contain false negatives (FNs),whereas probabilistic
methods steered by crossing-fibermodels yield dense connectomes, oftenwith low specificity due to false positives
(FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of
a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show
empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical
connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of
brain networks, including topological measures of network clustering, network efficiency and network modularity.
Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of
nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coeffi-
cient. For the estimation of network efficiency, the relative importance of specificity grows linearlywith the number
of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules
rather than within them. These spurious inter-modular connections have a dramatic impact on network topology.
We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the
need to map brain networks with high specificity.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Methods for mapping connectomes are imperfect. Structural
connections can be erroneously inferred between pairs of nodes
that are truly disconnected, giving rise to spurious connections
known as false positives (FPs) and reducing the specificity of
connectome reconstructions. Conversely, genuine connections can
be overlooked, resulting in false negatives (FNs) and reducing
connectome sensitivity. Despite current state of the art, it remains
challenging to reconstruct micro-, meso and macro-scale
connectomes that display both high sensitivity and high specificity
(Azadbakht et al., 2015; Bastiani et al., 2012; Calabrese et al., 2015;
Knosche et al., 2015; Reveley et al., 2015; Thomas et al., 2014).

This study primarily focuses on the sensitivity and specificity of
macro-scale connectomes, which are most often mapped with

automated fiber tracking methods (tractography) performed on
diffusion-weighted magnetic resonance imaging data (Hagmann et al.,
2008; Sporns et al., 2005). A considerable variety of tractography algo-
rithms has been developed to reconstruct axonal fiber bundles and
thereby infer where connections should be placed in network models
of the brain. Typically, millions of streamlines that follow the trajecto-
ries of all major neural white matter pathways are initiated throughout
the brain and the number of streamlines interconnecting pairs of brain
regions comprising a predefined parcellation atlas are enumerated to
yield a connectivity matrix of streamline counts (Li et al., 2012). Deter-
ministic tractography algorithms (Conturo et al., 1999;Mori et al., 1999)
guided by the diffusion tensor are criticized for their failure to resolve
crossing-fiber geometries (Alexander et al., 2007). This failure predom-
inantly results in FNs, but can also yield FPs as well, depending on the
specific method, data quality and parcellation resolution (Zalesky
et al., 2010a). Connectome sensitivity can be substantially improved
with probabilistic tractography algorithms (Behrens et al., 2003; Koch
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et al., 2002) that are combinedwith sophisticated crossing-fibermodels
(Behrens et al., 2007; Tournier et al., 2008), but probabilistic methods
can produce FPs.

These issues are most clearly borne out when considering the
discrepancy in connection density between tractography methods.
When reconstructed with tensor-guided deterministic tractography,
the human connectome typically has a connection density ranging be-
tween 1% and 40% (e.g. Van den Heuvel et al., 2012; Zalesky et al.,
2010a), whereas most probabilistic methods that model crossing fibers
yield densities exceeding 50–60% and can even be as high as 99–100%
(e.g. Roberts et al., 2016). In other words, probabilistic streamlines can
be found between more than half of all pairs of brain regions. How
can estimates of such a basic connectome property differ so drastically
between these methods? Is it that tensor-based methods yield many
FNs and are probabilistic crossing-fiber methods confounded by FPs
(Thomas et al., 2014)?

One way to reconcile this discrepancy is to adopt a Bayesian view
and assume probabilistic tractography provides an estimate of the like-
lihood of a connection. Whereas a single deterministic streamline might
be considered adequate to indicate the presence of a connection, a
single probabilistic streamline is unlikely to provide sufficient evidence
to make such inference and might therefore be thresholded away
when forming a binary network. However, the difficulty with Bayesian
inference is that streamline counts and other tractography outputs
do not differentiate between connection probabilities and connection
strengths (Jones, 2010; Kaden et al., 2007). Does a high streamline
count indicate a strong connection comprising many axonal projections,
or a highly probable yet weak connection comprising few axons
(Jones et al., 2013)? The difficulty in divorcing connection probability
from connection strength challenges simple applications of Bayesian
inference.

Despite these concerns, it is common to assume a monotonic
relationship between connection probability and streamline count.
This assumption enables the use of thresholding methods to elimi-
nate likely FPs from dense connectomes reconstructed with probabi-
listic tractography. Thresholding involves progressively eliminating
connections with the lowest streamline count until a desired connection
density is attained (Fornito et al., 2013, 2016; van Wijk et al.,
2010). While eliminating connections with a low streamline count
can improve connectome specificity, not all eliminated connections are
necessarily FPs, and thus any gain in specificity is inevitably traded for a
loss in sensitivity (Azadbakht et al., 2015; Knosche et al., 2015; Thomas
et al., 2014). Therefore, while thresholding methods cannot yield
connectomes displaying both high sensitivity and high specificity,
they may allow a tradeoff to be achieved between these two measures,
assuming amonotonic relation between streamline counts and connec-
tion probabilities. Lenient thresholds produce dense connectomes with
high sensitivity,whereas stringent thresholds yield sparse connectomes
with high specificity.

Thresholding is however in many senses an unsettling approach; all
the finesse of a sophisticated crossing-fiber model and probabilistic
tractography is largely overridden by a simple and arbitrary threshold,

which ultimately determines the most fundamental property of a
connectome—its connection density. In this way, the burden of
connectome reconstruction is precariously balanced on a single
threshold, with less faith placed in the accuracy of the reconstruction
process itself.

An important choice must therefore bemade between sensitivity and
specificity. Should the dense and highly sensitive reconstructions yielded
by cutting-edge crossing-fiber models and probabilistic tractography be
favored over the sparse and specific reconstructions that are characteristic
of tensor-guided deterministic methods? Moreover, should thresholding
be used to strike a balance between these two extremes of the
sensitivity-specificity continuum? And if so, where along this continuum
is the optimal tradeoff between sensitivity and specificity? These ques-
tions can be addressed by quantifying the relative detriment of FPs versus
FNs. Are FPs worse than FNs to connectome accuracy, and if so, by how
much?

The answer to these questions depends on the application at hand.
For example, sensitivity is vital in neurosurgical planning, in order to
minimize the risk of injury to axonal connections that would result in
postoperative deficits. Statistical connectomics is another important ap-
plication where this question manifests. When statistically comparing
connectomes between groups (Griffa et al., 2013), FPs lead to a linear
increase in the number ofmultiple comparisons,whereas FNs can conceal
genuine group difference.

The analysis of connectome topology with the use of graph theory is
the focus of this study and represents an important application
(Bullmore and Sporns, 2009) for which little is known about the impact
of connectome sensitivity and specificity. Is it FPs or FNs that lead to
poorer estimation of the topological properties of a complex network,
such as its efficiency, modularity and small-world organization? Ad-
dressing this question is crucial to determine the most appropriate
connectome reconstruction methodology for maximizing the accuracy
of graph theoretical analyses of brain networks.

It is trivial to see that FPs and FNs are equally detrimental to themea-
surement of some network properties. An example is the average nodal
degree, which for a binary, undirected network is given by ∑i di/N,
where N is the total number of nodes and di is the number of connec-
tions incident to the ith node (Rubinov and Sporns, 2010). It can be
seen that each FP increases the average nodal degree by 2/N, since the
degree of exactly two distinct nodes is increased by unity with the addi-
tion of a new connection, whereas each FN decreases the average nodal
degree by the same amount. FPs and FNs are therefore equally detri-
mental to the average nodal degree because they introduce identical
amounts of absolute error. As we will demonstrate here, this parity
between sensitivity and specificity does not hold for most measures of
complex network organization. The purpose of this study is to determine
whether sensitivity or specificity is more important in these cases.

Connectome sensitivity and specificity is also an important concern at
the micro- and meso-scale. While tract tracing techniques (Zaborszky
et al., 2006) are often considered a gold standard, they are not without
problems. FNs can arise due to distance dependencies of some tracers
(Ercsey-Ravasz et al., 2013; Markov et al., 2013). FPs can arise due to

Table 1
Connectome connection density variation across species and reconstruction methodologies.

Species Investigators Method Density Nodes

Human E.g. Roberts et al. (2016) Probabilistic/X-fiber N50% ~50–5000
Human E.g. Zalesky et al. (2010a) Deterministic/tensor 1–40%a ~50–5000
Rat Bota et al. (2012) Axonal tracer 45% 73
Caenorhabditis elegans Varshney et al. (2011), White et al. (1986) Electron microscopy 3.8% 279
Macaque Markov et al. (2014) Reterograde axonal tracer 66% 29
Mouse Oh et al. (2014) Anterograde axonal tracer & model 5–20%b 213
Fruit fly Shih et al. (2015) Genetic labeling and light microscopy 82% 49
Mouse Zingg et al. (2014) Reterograde & anterograde tracers ~50%c 49

a Density depends on data quality, number of nodes and tractography algorithm.
b Density depends on p-value threshold.
c Density not reported. Estimate based on connectivity matrix.
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